
A Recursive Point Filter Algorithm for the Incremental Pruning

by

MAHDI NASER-MOGHADASI, B.S.

A Thesis

In
Computer Science

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfilment of
the Requirements for

the Degree of
MASTER OF SCIENCES

APPROVED

Larry Pyeatt, Chair, Ph.D.

Mohan Sridharan, Ph.D.

Nelson Rushton, Ph.D.

Fred Hartmeister
Dean of the Graduate School

May, 2010

c©Copyright

by

Mahdi Naser-Moghadasi

2010

to my

MOTHER and FATHER

with love

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Table of Contents

Page
Table of Contents . ii
Abstract . iii
List of Tables . v
List of Figures . vi
Chapter
1 Introduction . 1
2 POMDP . 4

2.1 Background . 4
2.2 Partially Observable Markov Decision Problem 9
2.3 Pruning . 14
2.4 Use Vector Pruning in Dynamic Programming 16

3 The Scan Line Technique . 20
3.1 Generating the Belief . 22
3.2 The Scan Line . 25

4 Recursive Point Filter (RPF) . 27
4.1 Hyperplane . 27
4.2 RPF . 29

4.2.1 RPF in a 2-states belief space 29
4.2.2 RPF in higher dimensions 32

5 Experimental Results . 34
5.1 Empirical Results . 34
5.2 Simulation . 38

6 Conclusion . 40
6.1 Discussion . 40
6.2 Future Works . 42

A Details of some POMDP problems 43
A.1 Tiger . 43
A.2 Network . 44
A.3 Shuttle . 44

ii

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Abstract

Decision making is one of the central problems in artificial intelligence and
specifically in robotics.In most cases this problem comes with uncertainty both
in data received by the decision maker/agent and in the actions performed in
the environment. One effective method to solve this problem is to model the
environment and the agent as a Partially Observable Markov Decision Process
(POMDP). A POMDP has a wide range of applications such as: Machine
Vision , Marketing, Network troubleshooting, Medical diagnosis etc.

In recent years, there has been a significant interest in developing tech-
niques for finding policies for (POMDPs). Most exact algorithms for a general
POMDP use a form of dynamic programming in which a piecewise-linear and
convex representation of one value function is transformed into another.

We consider a new technique, called Recursive Point Filter (RPF) based on
Incremental Pruning (IP) POMDP solver to introduce an alternative method
to Linear Programming (LP) filter. It identifies vectors with maximum value
in each witness region known as dominated vectors, the dominated vectors at
each of these points would then be part of the upper surface. RPF takes its
origin from computer graphic.

First, it projects higher-dimensional vectors into 2D vectors then in each
recursion, it gets two points as the start and the end points of the 2-states belief
boundary. Next, it identifies vectors with maximum value in each middle,
start and end belief points of the given interval. If the dominated vector of
the medium point is the same with each of the dominated vectors of the start
or end points; it adds the vector to the pruned list otherwise it is recursively
executed with a new divided interval till termination condition is reached.

A termination condition is reached when the length of the interval bound-
ary is less than a pre-assigned parameter δ. In this thesis, we will test RPF
against several POMDP solvers such as the popular Incremental Pruning with
Linear Programming filter. Our previous work on Incremental Pruning with
Scan Line Point Based filter [14] is also used to measure the relative speed and
quality of our new method. We show that a high-quality POMDP policy can

iii

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

be found in lesser time in some cases. Furthermore, RPF has a solution for
several POMDP problems that LP and SCF could not converge to in 24 hours.
Experiments are run on problems from POMDP literature, and an Average
Discounted Reward (ADR) is computed by testing the policy in a simulated
environment.

iv

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

List of Tables

5.1 α, β, ε and δ parameters for the SCF, LP and RPF algorithms 37
5.2 Experiment I: Descriptions and results presented as the arith-

metic mean of 32 run-times. 37
5.3 Experiment II: Average Discounted Reward 39

v

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

List of Figures

3.1 2D Vectors in a 2-states belief space 24

4.1 2D Vectors in a 2-states belief space 28
4.2 Incomplete execution of RPF over a 2-states belief space. (δ=0.05) 29
4.3 Value Function is shown as a plane in a 3-states POMDP problem 32

vi

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Chapter 1

Introduction

One of the most challenging tasks of an intelligent decision maker or agent

is planning, or choosing how to act in such of interactions with environment.

Such agent/environment interactions can be often be effectively modelled as a

Partially Observable Markov Decision Process (POMDPs).Operation research

[15, 23] and stochastic control [1] are two domains where this model can be

applied for balancing between competing objectives, action costs, uncertainty

of action effects and observations that provide incomplete knowledge about

the world . Planning, in the context for a POMDP, corresponds to finding

an optimal policy for the agent to follow.The process of finding a policy is

often referred to as solving the POMDP. In the general case, finding an exact

solution for this type of problem is known to computationally intractable [25],

[8]. However, there have been some recent advances in both approximate and

exact solution methods.

The value iteration algorithm for a POMDP was introduced by [23] first.
1

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

The value function V for the belief-space MDP can be represented as a finite

collection of | S | - dimensional vectors known as α vectors. Thus, V is both

piecewise - linear and convex [23].Although its initial success for solving hard

POMDP problems, there are two distinct reasons for the limited scalability of

a POMDP value iteration algorithm.The more widely reason is dimensionality

[13]; in a problem with n physical states, POMDP planners must reason about

belief states in an (n -1) dimensional continuous space. The other reason is,

the number of distinct action - observation histories grows exponentially with

the planning horizon. Pruning is one proposed[3] solution to whittle down the

set of histories considered.

In some cases, an agent does not need to know the exact solution of a

POMDP problem to perform its tasks. Over the years, many techniques have

been developed to compute approximate solutions to POMDP problems. The

goal of finding approximate solutions is to find a solution in a fast way within

the condition that it does not become too far from the exact solution. Point-

based algorithms [17],[24],[27] choose a subset of B of the belief points that is

reachable from the initial belief state through different methods and compute

a value function only over the belief points in B. After the value function has

converged, the belief-point set is expanded with all the most distant immediate

successors of the previous set.

PBVI and Perseus use two opposing methods for gathering the belief point

sets B. In larger or more complex domains, however, it is unlikely that a ran-

dom walk would visit every location where a reward can be obtained. PBVI

attempts to cover the reachable belief space in a uniform density by always

2

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

selecting immediate successors that are as far as possible from the B. Perseus,

on other hand, simply explores the belief space by performing random trajec-

tories. While the points gathered by PBVI generate a good B set, the time it

takes to compute these points makes other algorithms more attractive.

However, approximate methods have the drawback that we cannot pre-

cisely evaluate them without knowing the exact solutions for the problems

that we are solving.Furthermore, there are crucial domains that need exact

solution to control accurately. For example when dealing with human’s life or

controlling an expensive land rover. Our objective in this thesis is to present

an alternative solver to evaluate approximate solutions on POMDP problems

with small number of states.

Among current methods for finding exact solutions, Incremental Prun-

ing(IP) [3] is the most computationally efficient . As with most exact and

many approximate methods, a set of linear action-value functions are stored

as vectors representing the policy. In each iteration of running algorithm, the

current policy is transformed into a new set of vectors and then they are fil-

tered. The cycle is repeated for some fixed number of iterations, or until the

value function converges to a stable set of vectors, The IP filter algorithm

relies on solving multiple linear programs (LP) at each iteration.

3

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Chapter 2

POMDP

2.1 Background

Planning problem is defined as: given a complete and correct model of the

world dynamics and a reward structure, find an optimal way to behave.In

Artificial intelligence, when the environment is deterministic our knowledge

about our surrender describes with set of preconditions. In that case, Plan-

ning can be addressed by adding those additional knowledge preconditions

to traditional planning systems [16].However in stochastic domains, we depart

from the classical planning model. Rather than taking plans to be sequences of

actions, which may only rarely execute as expected, we take them to be map-

ping from states - which are situations - to actions that specify the agent’s

behaviour no matter what may happen [4].

Most research in [12, 6, 28] methods develop partial policies and conditional

plans for completely observable domains . These methods assume that the
4

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

agent in each time steps knows where it is. However, in most real world

problems, observability comes with uncertainty. POMDP is an approach to

face this problem. One important factor of the POMDP is that there is no

distinction drawn between actions taken to change the state of the world and

actions taken to gain information by agent.

The value iteration algorithm for POMDP was introduced by [23] first.

The value function V for the belief-space MDP can be represented as a finite

collection of | S | - dimensional vectors known as α vectors. Thus, V is both

piecewise - linear and convex [23].Although its initial success for solving hard

POMDP problems, there are two distinct reasons for the limited scalability of

a POMDP value iteration algorithm.The more widely reason is dimensionality

[13]; in a problem with n physical states, POMDP planners must reason about

belief states in an (n -1) dimensional continuous space. The other reason is,

the number of distinct action - observation histories grows exponentially with

the planning horizon. Pruning is one proposed[3] solution to whittle down the

set of histories considered.

There are many ways to approach this problem based on checking which

belief states can be reached [30] ,[9] , searching for good controllers [18] and

using dynamic programming [23] [10] [13]. Most exact algorithms for general

POMDPs use a form of dynamic programming in which a piecewise - linear

and convex representation of one value function is transformed into another.

In some cases, an agent does not need to know the exact solution to a

POMDP problem to perform its tasks. Over the years, many techniques have

been developed to compute approximate solutions to POMDP problems. The

5

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

goal of finding approximate solutions is to find a solution in a fast way with a

condition that it does not fall too far from the exact solution.

A possible approximation is to compute an optimal value function over a

finite subset B of the belief space .However an optimal solution over B does not

guarantee optimality over belief points not in B. It is therefore possible that

for some reachable belief states (which are not included in B), the resulting

value function is suboptimal. Point-based algorithms [17],[24],[27] choose a

subset of B of the belief points that is reachable from the initial belief space

state through different methods and compute a value function only over the

belief points in B. After a value function has converged, the belief-point set

is expanded with all the most distant immediate successors of the previous

set. In [27] suggests to explore the world using a random walk from the initial

belief state b0. The points that were observed during a random walk compose

the set B of belief points. The Persus algorithm then iterates over these points

in a random order. During each iteration backups are executed over points

whose value has not yet improved in current iterations. PBVI and Perseus

use two opposing methods for gathering the belief point sets B. In larger or

more complex domains, however, it is unlikely that a random walk would

visit every location where a reward can be obtained. PBVI attempts to cover

the reachable belief space in a uniform density by always selecting immediate

successors that are as far as possible from the B. Perseus, on the hand, simply

explores the belief space by performing random trajectories. While the points

gathered by PBVI generate a good B set, the time it takes to compute these

points makes other algorithms more attractive.

6

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Smith and Simmons [24], presented the heuristic search value iteration

(HSVI) that maintains both an upper and lower bound over the value func-

tion. HSVI traverses the belief space following the upper bound heuristic,

and selecting successor belief points where the gap between the bounds is

the largest, until some stopping criteria has been reached. HSVI differs con-

siderably from other point-based algorithms in collecting belief points after

each iteration and also these collected points depend on the computed value

function.

Recently,Shani [22], suggested the forward search value function (FSVI) al-

gorithm. FSVI uses ideas from HSVI, such as traversing the belief space follow-

ing a heuristic and executing backups in a reversed order. The FSVI heuristic

for traversing the belief space relies on an optimal Q function for the under-

lying MDP.Aside from point-based approaches, a second dominant method is

the computation of a policy directly without a value function through the use

of finite state controller.Another different approach is using compression tech-

niques to create a smaller model and solving the compressed POMDP instead

of the larger one [19].One of the newest method is the use of bounded on-line

search in the belief space, with heuristic function to decide which action to

execute in real time [21].

However, approximate methods have the drawback that we cannot pre-

cisely evaluate them without knowing the exact solutions for the problems

that we are solving.Furthermore, they are crucial domains that need exact

solution to control accurately. For example when dealing with human’s life or

controlling an expensive land rover. Our objective in this thesis is to present

7

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

an alternative solver to evaluate approximate solutions on POMDP problems

with small number of states.

Basically, numerous exact algorithms to POMDP have their different ways

of finding solution vector set [2] [31]. Most of them start by constructing a

finite representation of piece-wise linear convex function over the belief space,

then iteratively updating this representation, expanding horizon.In contrast

to the approximate technique, exact solvers perform updates for the entire

belief space B, and use dynamic programming approach to update their value

functions.

Among current methods for finding exact solutions, Incremental Prun-

ing(IP) [3] is the most computationally efficient. As with most exact and

many approximate methods, a set of linear action-value functions are stored

as vectors representing the policy. In each iteration of running algorithm, the

current policy is transformed into a new set of vectors and then they are fil-

tered. The cycle is repeated for some fixed number of iterations, or until the

value function converges to a stable set of vectors, The IP filter algorithm relies

on solving multiple linear programs (LP) at each iteration. Based on experi-

ence, it is known that the quality and speed of the POMDP solver depends on

the speed and numerical stability of the LP solver that it uses.It was for this

propose that we introduce RPF. RPF selects middle point in a given interval

of the belief space recursively, it identifies a vector with the maximum value

in each witness region known as a dominated vector.

8

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

2.2 Partially Observable Markov Decision Prob-

lem

The Partially Observable Markov Decision Problem is a framework that models

interactions between an agent and a stochastic partially observable environ-

ment [26]. It can be denoted as a tuple (S,A, R, P, γ, Z, 0) where

• S represents the set of all possible states.

• A the set of all possible actions.

• R(s, a) is the expected reward after performing action a ∈ A when the

agent is in state s ∈ S.

• P (s′ | s, a) is the transitional probability to move from one state s ∈ S

to another state s′ ∈ S after performing an action a ∈ A.

• γ is the discount factor which controls the importance of previous rewards

in the current computation.

• Z is the set of all possible observations.

• O(z | s) is the probability of observing z ∈ Z in a state s ∈ S.

b can also be defined as a vector of length | S | specifying a probability dis-

tribution over hidden states. The elements of this vector b(i), specify the

conditional probability of the agent being in the state si, given the initial be-

lief b0 and the history experienced so far.[11]. This probability distribution

represents the agent’s belief that state s is the true state, for all s ∈ S. The

9

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

probability distribution b is commonly referred to as the agent’s belief state.

Stated another way, a belief state b is a probability distribution over every

state s ∈ S, such that
∑

s∈S b(s) = 1.0. Based on b, an action a ∈ A is taken

which causes the state to change from the current state s to some state s′

according to the state transition probability P (s′ | s, a). The agent may then

receive an observation z. After an action a has been taken and an observation

z has been made, the agent updates its current belief b (with the initial belief

denoted as b0) to b′. This new belief is computed using Bayes rule:

b′ (s′) = p (s′ | z, a, b)

=
1

p (z | a, b)
p (z | s′)

∑
s∈S

p (s′ | a, b, s) p (s | a, b)

=
1

p (z | a, b)
p (z | s′)

∑
s∈S

p (s′ | a, s) b (s) (2.1)

The agent’s goal is to select actions that will maximize its long term reward,

in other word finding the optimal actions. The agent chooses the optimal

actions by using a policy. The policy can be expressed as a mapping from a

set of beliefs into actions, denoted by π : β → A.

For POMDP problems, a policy has an associated value function, which is

defined as the expected future discounted reward the agent will accumulate

by following the policy starting from belief b [26]. A value function V is a

mapping from the set of beliefs to real numbers denoted by V : β → R.

Its value is retrieved from the following equation V (b) = maxk

∑|S|
i=1 vk

i pi

where coefficients of the kth linear function is determined by a |S|-dimensional

vector V = [v0, v1, . . . , v|S|], and pi denotes the ith parameter of the belief

10

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

distribution b [26]. Exact solution methods for POMDPs take advantage of

the fact that value functions for belief are piecewise-linear and convex, and

thus can be represented using a finite number of hyperplanes in the space of

beliefs [23].Computing the next value function estimate is looking one step

deeper into the future and it requires taking all possible actions the agent

can take and all subsequent observations it may receive. This leads to an

exponential growth of vectors with the planning horizon. For a more complete

introduction to POMDP please see [29].

The set of linear functions, when plotted, forms a piecewise linear and

convex surface over the belief space. Finding the exact optimal policy for a

POMDP requires finding this upper surface. At any horizon t, the correspond-

ing value function can be calculated recursively with the Bellman optimality

equation:

Vt (b, a)=maxa

[
R (b, a) + β

∑
z

Vt−1(z | a, b)p (z | a, b)

]
(2.2)

where

Reward(b, a) =
N∑

i=1

piR(si, a) (2.3)

Value iteration is one standard algorithm used to provide solution to a

POMDP problem, it associates values to probability distribution over states.Unfortunately,

exact value iteration is intractable for most POMDP problems with more than

a few states, because the size of the set of hyperplanes defining the value func-

tions can grow exponentially with each step. As with most existing filtering

techniques, RPF prunes vectors that are not part of the solution during every

11

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Algorithm 1 POMDP Solver

1: Υ = (0;0,. . .,0)
2: for τ = 1 to T do
3: Υ’ = ∅
4: for all (a’; vk

1 , . . . , v
k
n) ∈ Υ do

5: for all control actions a do
6: for all measurements z do
7: for j = 1 to N do
8: vk

a,z,j =
∑N

i=1 vk
i p(z|si)p(si|a, sj)

9: end for
10: end for
11: end for
12: end for
13: for all control actions a do do
14: for all k(1),. . .,k(M)=(1,. . .,1) to (|Υ . . . , |Υ|) do
15: for i = 1 to N do
16: v′i = γ

[
r(si, a) +

∑
z v

k(z)
a,z,i

]

17: end for
18: (a; v′1, . . . , v

′
N) to Υ’

19: end for
20: end for
21: optional filtering method to prune Υ’
22: Υ = Υ′

23: end for
24: return Υ

12

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Algorithm 2 policyPOMDP(Υ, b =(p1, . . . , pN)):

1: û = arg max
(a;vk

1 ,...,vk
N)εΥ

∑N
i=1 vk

i pi

2: return û

iteration, until the solution converges. This filter operation appears on line 21

of Algorithm 1. Without filtering, the number of vectors in the set Υ increases

exponentially on each iteration by a factor of |S| × |A| × |Z|. Therefore fail-

ing to filter at this stage can exponentially increase the number of vectors to

take into consideration to find the policy π. Also, it is worth mentioning that

this filtering step is the most important factor affecting the speed of solving

POMDPs.

Algorithm 1 calculates the value, as a linear function over the belief space,

of taking action a′ after taking an action a and performing observation z (line

8), for all states, all actions, and all observations. Every combination of an

action and observation will define one linear function [29]. This algorithm

computes value functions recursively, so every linear function depends on the

previous values. Also, the number of the resulting value functions in line 16

grows exponentially, since every observation is combined with every possible

previous function. This exponential growth is what makes POMDP problems

intractable in the general case.

Algorithm 2 shows how the value piecewise linear value function is used as

the optimal policy. Note that in practice each vector would be “tagged” with

the appropriate action, or one would maintain a set of vectors for each action.

Besides slowing convergence, Algorithm 1 failure to filter would make selecting

actions in Algorithm 2 very slow as well. This has motivated researchers to

13

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

find new insights to efficiently reduce the number functions on every iteration.

The most commonly used filtering technique for finding exact solution, as

mentioned earlier, relies on linear programming, which has a disadvantage of

being computationally demanding and which may take a long time to converge.

This is the reason why we introduce a new filtering technique, which can

open up new ways to speed this computation in the future, without using LP

packages.

2.3 Pruning

A key source of complexity is the size of the value function representation,

which grows exponentially with the number of observations. Fortunately, a

large number of vectors in this representation can be pruned away without

affecting the values using a linear programming (LP) method. Solving the

resulting linear programs is therefore the main computation in the DP update.

Given a set of | S |-vectors A and a vector α, witness region defines as:

R(α, A) = {x | x º 0, x · 1 = x · α Â x · α′, α′ ∈ A \ {α′}};

This set known as witness region includes belief states for which vector α has

the largest dot product compared to all the other vectors in A. R(α,A) is

witness region of vector α because of any belief b can testify that α is needed

to represent the picewise-linear convex function given by A ∪{α}. Having

14

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

definition of R, Purge function defines as :

purge(A) = {α | α ∈ A,R(α,A) 6= φ}; (2.4)

It is set of vectors in A that have non-empty witness regions and is precisely the

minimum-size set for representing the piecewise-linear convex function given

by A.[13]. We can also consider it as pruning or filtering. With filtering those

useless vectors in the sense that their witness region is empty are pruned. Since

only the vectors that are part of the upper surface are important, discovering

which vectors are dominated is difficult. In Incremental Pruning algorithm,

linear programs are used to find a witness belief state for which α vector is op-

tima, thus the vector is a part of the upper surface. However , linear programs

degrade performance considerably. Consequently, many research efforts have

focused on improving the efficiency of vector pruning. The pruning happens at

three stages of DP update, namely the projection stage, the cross-sum stage,

and the maximization stage.The incremental pruning (IP) algorithm was de-

signed to address this problem by interleaving the cross-sum and the pruning

[3].

15

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

2.4 Use Vector Pruning in Dynamic Program-

ming

Note that the computation of V in Equation 2.2 can be divided into three

stages[3]:

V a,z(b) =
Reward(b, a)

| Z | + βVt−1(z | a, b)p (z | a, b); (2.5)

V a(b) =
∑
z∈Z

V a,z(b); (2.6)

Vt (b, a)= maxa∈AV a(b) (2.7)

Each of these value functions is piecewise linear and convex, and can be repre-

sented by a unique minimum- size set of vectors. We use the symbol of Sz
a, S

a,

S ′ ∀ a ∈ A, z ∈ Z to refer to these minimum-size sets. The Sz
a, S

a, S′ sets as

defined above can be computed as :

S′ = purge(
⋃
a∈A

Sa) (2.8)

Sa = purge(
⊕
z∈Z

Sz
a) (2.9)

Sz
a = purge(r(b, a, z) | b ∈ B) (2.10)

where

r(b, a, z)(s) =
Reward(s, a)

| Z | + βb(s)P (z | a, s′)P (s′ | a, s) (2.11)

16

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Algorithm 3 SIMPLE-FILTER(w,U)

1: for each u ∈ U
2: if w(s) ≤ u(s),∀s ∈ S then
3: return TRUE
4: else
5: return FALSE
6: end if

Algorithm 4 LP-FILTER(w,U)

1: solve the following linear program
2: variables: d,b(s) ∀ s ∈ S
3: maximize d
4: subject to the constraints
5: b.(w - u) ≥ d, ∀ u ∈ U
6:

∑
s∈S b(s) = 1

7: if d ≥ 0 then
8: return b
9: else

10: return nil
11: end if

We refer to these three stages as maximization pruning ,cross-sum pruning

and projection pruning.

There are two tests for dominated vectors.The simplest method is to re-

move any vector u that is point-wise dominated by another vector w Algo-

rithm 3.Although this method of detecting dominated vector is fast, it can

only remove a small number of dominated vectors. In Algorithm 6, A linear

programming method can detect all dominated vectors. Given a set of vectors

W, it extracts non-dominated vectors from W and puts them in the set D.

Each time a vector w is picked from W ; it is tested against D using linear

program listed in algorithm 4. The linear program determines whether adding

w to D improves the value function represented by D for any belief state b.

17

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Algorithm 5 BEST(b,U)
1: max ← −∞
2: for each u ∈ U
3: if (b.u≥max) or ((b.u=max) and (u ≤lex w)) then
4: w ← u
5: max ← b.u
6: end if
7: return w

Algorithm 6 PRUGE(b,U)

1: D ← ∅
2: while W 6= ∅ do
3: w ← any element in W
4: if SIMPLE-FILTER(w,D) = true then
5: W ← W - w
6: else
7: b ← LP-FILTER(w,D)
8: if b = nil then
9: W ← W - w

10: else
11: w ← BEST(b,W)
12: D ← D ∪ w
13: W ← W - w
14: end if
15: end if
16: end while
17: return D

If it does, the vector in W that gives the maximal value at belief state b is

extracted from W using the Algorithm 5, and is added to D. Otherwise w is

a dominated vector and is discarded. The symbol ≤lex in algorithm 5 denotes

lexicographic ordering.It is worth to mention that the number of constraints

in each linear program for a set of W is the size of the resulting set which in

worth case can be large as |W |.
In the next chapter, we will present our previous research on using a Scan-

18

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Line based filtering technique to recognize the dominated vectors. Scan-Line

filter gets its origin from computer graphics.

19

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Chapter 3

The Scan Line Technique

One of the most challenging tasks of an intelligent decision maker or agent is

planning, or choosing how to act in such a way that maximize total expected

benefit over a series of interactions with the environment.

Planning, in the context of a POMDP, corresponds to finding an optimal

policy for the agent to follow. The process of finding a policy is often referred

to as solving the POMDP. In the general case, finding exact solutions for this

type of problem is known to computationally intractable [25, 8]. However,

there have been some recent advances in both approximate and exact solution

methods.

In some cases, an agent does not need to know the exact solution to a

POMDP problem in order to perform its tasks. Often, an approximate solution

is adequate. Over the years, many techniques have been developed to compute

approximate solutions to POMDP problems. The goal of finding approximate

solution is to find a solution very quickly with a condition that the solution is
20

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

not “too far” from the exact solution, where the definition of what is too far

is a problem dependent. It is for this purpose that SCF was introduced; this

new technique is based on the scan line method from computer graphic. This

approach does not directly imitate the scan line algorithm, which performs

a vertical sweep from left to right or right to left. Instead, It starts from a

uniform probability distribution, and moves on in a predefined direction.

Many approximate POMDP solvers have been developed over the years.

Among these solvers are PERSEUS and PBVI. PERSEUS and PBVI are both

point based solvers. They differ by the fact that PERSEUS uses randomly

generated belief points instead of an increasing belief set, as in PBVI. However,

the two methods use a similar technique, called backup, which can increase the

number of belief points in PBVI and readjust the value of some belief points

in PERSEUS at each iteration of the POMDP algorithm. Scan-Line approach

differs from these two methods by generating belief points once and using them

until the solution is found. Also, the belief points that are generated are quite

predictable and not entirely random.

Value functions are stored in the form of vectors v = (v1, . . . , v|S|) which

represent hyperplanes over belief space. Beliefs can also be presented in the

form of vectors b = (b1, . . . , b|S|) with a condition that b1 + b2 + . . . + b|S| =

1. Given a value function, v, and a belief, b, we can calculate the reward

associated with b by the following computation:

R = v1b1 + v2b2 + . . . + x|S|b|S| (3.1)

21

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Now, assume that we have a set of value functions V = (V1, . . . , Vn). What

we need to do is, to generate a belief b and calculate the reward R1, . . . , Rn

associated with b with respect to V . The value function that generates the

maximum reward, from R1, . . . , Rn, is recorded and is considered part of the

solution to the policy for the current problem.

Like all approximations, the quality of the solution depends on how close it

is to the true solution. In this technique, the quality of the solution is affected

by the way the belief, b, is generated and how b is moved to cover most of the

belief space related to the problem.

3.1 Generating the Belief

Instead of generating beliefs that scan the belief space from left to right or

right to left, a different approach was taken. It generates a set of beliefs B,

with the initial belief b0, set to have equal probability of being in each existing

state, b0 = (1
|S| , . . . ,

1
|S|), i.e. b0 was a uniform distribution over S. Then,

a number ε is generated with 0 < ε < 1
|S| . To assure that the sum of the

probability distribution in b is equal to 1, It moves b in the following way,

b =

(
1

|S| + (|S| − x)ε,
1

|S| + (|S| − x + 1)ε,

1

|S| + (|S| − x + 2)ε, . . . ,
1

|S| − (|S| − x + 2)ε,

1

|S| − (|S| − x + 1)ε,
1

|S| − (|S| − x)ε

)
. (3.2)

22

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

The idea is to make sure that if it adds ε to x number of probabilities, then

it also subtracts ε from another x number of probabilities. The main goal is

that each addition of ε should be compensated by a subtraction of ε so that

sum of probabilities equal to 1. The number of belief points that will be in

the set B depends on the value of a density parameter α, where 0 < α < 1.

Algorithm 7 Belief Generator

1: for ε = 0 to 1
|S| step α do

2: for k = 1 to |S| do
3: for l = 1 to |S| do
4: for i = 1 to |S| do
5: for j = 1 to |S| do
6: if (l - k) < (j - i) then
7: continue
8: end if
9: for x = k to l do

10: z[x][index] = z[x][index] - ε
11: reduceSum = reduceSum + ε
12: end for
13: increasedStep = ε
14: for y = i to j do
15: z[y][index] = z[y][index] + increasedStep
16: increasedSum = increasedSum + increasedStep
17: end for
18: if increasedSum < reduceSum then
19: z[j][index] = z[j][index] +(reduceSum - increasedSum)
20: end if
21: increasedSum = reduceSum = 0
22: index = index + 1
23: end for
24: end for
25: end for
26: end for
27: end for

Algorithm 7 shows the algorithm that was used to generate belief points.

In this algorithm, the array z is initialized with the initial belief point b0, as

23

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Figure 3.1: 2D Vectors in a 2-states belief space

defined above, in all its indices. Line 1 determines the maximum and minimum

boundary of ε which are 1
|S| and 0 respectively. In line 1, α is added to ε on each

iteration until it reaches the maximum boundary. Lines 2 through 5 specify

the range of indices where values will be increased or reduced. On lines 9 to

12, ε is subtracted from the values in index k to l. On lines 14 to 17, ε is added

to the values in index i to j. If the number of subtractions by ε exceeds the

number of additions by ε, then SCF fixes the difference by adding the value of

the number of excess times ε to the final index in lines 18 to 20. Belief points

are only generated once. The belief set remains constant through all iterations

of the POMDP algorithm.

24

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

3.2 The Scan Line

As parameter β is used to chose the belief points in B that will participate in

the scanning procedure. The value of β indicates how many belief points from

the current one will be skipped as the scan is performed.

After the set of belief points B is generated, as shown in figure 3.1 it takes

a belief b ∈ B, calculates the expected rewards associated with b, finds the

maximum, and records the corresponding vector (i.e. value function) that is

associated with the maximum reward. This procedure goes on until it has

exhausted all the belief points in B or the number of remaining belief points

is less than the value of β or the set of value functions associated with the

maximum rewards is equal to the set of value functions.

In case of a small difference between two rewards, it uses α as the deciding

factor. Any differences larger than α are considered significant.

The strength of the SCF approach resides in the fact that it was able to

solve two problems that LP was not able to finish within the 12 hour limit.

Further experiments and tunings need be performed to exploit the strengths

of this approach and to increase its speed. In the next chapter we present our

approach RPF filter algorithm which is for the Incremental Pruning method.

In the RPF filtering technique, hyperplanes are formed from corresponding

value function vectors. RPF selects a middle point in a given interval of the

2D belief space recursively, then it identifies the dominated vectors in the both

corners of the interval. If the dominated vector in the middle point is same

as either the dominated vector of each boundary, it terminates recursion and

extends witness region from middle point to that corner. Otherwise, it is called
25

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

again with the new undiscovered interval.

26

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Chapter 4

Recursive Point Filter (RPF)

4.1 Hyperplane

Value functions, as mentioned earlier, are represented by vectors in R|S|, where

each element s ∈ S of a vector represents the expected long term reward of

performing a specific action in a corresponding state s. As the agent does not

fully know the state it is currently in, so it would value the effect of taking an

action depending on the belief it has for the existing states. This results in a

linear function over the belief space for each vector. In other words, the value

function simply determines the value of taking an action a given a belief b

that determines the probability distribution over S. For example, in a simple

problem with two states, if taking action a costs 100 in state s1, and -50 for s2,

then if the agent believes 50% to be in s1, then the value of performing a would

be valued as 25. Thus, it can be formulated as mapping from the belief space

to a real number, which is defined by the expected reward. This mapping can
27

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Figure 4.1: 2D Vectors in a 2-states belief space

then be described by functions of hyperplanes, which are generalized by the

following equation:

H = {x ∈ R|S| : (v · x) = d} (4.1)

with d ∈ R. In the Equation 4.1, v · x denotes the scalar product between

vectors v and x. Each vector then, defines an affine hyperplane (4.1) that

passes through these sets of values or points. From here, we refer to lines and

planes as hyperplanes, and may use the three terms interchangeably.

In RPF, we begin by pruning completely dominated vectors, which means

that we must eliminate any vector Vi that satisfies Vi < Vj ∀b ∈ β and j 6= i.

This property can hold for collinear planes or for planes that are dominated

component-wise for all states. We can notice that after eliminating these

28

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Figure 4.2: Incomplete execution of RPF over a 2-states belief space. (δ=0.05)

vectors, we are only left with intersecting planes.

4.2 RPF

4.2.1 RPF in a 2-states belief space

Since pruning eliminates the set of vectors which are not part of the final

solution, it is an important part to make most of the POMDP solvers faster.

As shown for instance in Figure 4.1, although there are 6 vectors in a 2-states

belief space, only 4 vectors, { V1 ,V2,V3,V6 } will be included as the part of

the final solution after pruning.

In this section, we will explain RPF in the 2D space where a belief state is

29

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

represented by one dimensional coordinate system. We look at the problem of

the filtering as identifying vectors that are part of the upper surface. In the

diagram of a 2-states problem, belief space is represented by a horizontal line

where each point on this line corresponds as the probability of being in the

state (Let assume state is s1), we call this value as Belief(s1). By knowing

the probability of being in the state s1, the other belief state is calculated by

1−Belief(s1). Each vector is a linear function of the belief point, and returns

the expected reward given a belief state s1 or s1. We use this concept in the

RPF later.

Algorithm 8 RPF(InterStart, InterEnd):

1: if (InterEnd - InterStart) ≺ δ then
2: return
3: end if
4: Vsrt ←Dominate Vector in InterStart
5: Vend ←Dominate Vector in InterEnd

6: Vmid ←Dominate Vector in
(InterStart + InterEnd)

2
7: if Vsrt = Vend = Vmid then
8: PrunedList.Append(Vsrt)
9: return

10: end if
11: if Vsrt 6= Vmid then

12: PrunedList.Append(RPF(InterStart,
(InterStart + InterEnd)

2
))

13: else
14: PrunedList.Append(Vsrt)
15: end if
16: if Vend 6= Vmid then

17: PrunedList.Append(RPF(
(InterStart + InterEnd)

2
, InterEnd))

18: else
19: PrunedList.Append(Vend)
20: end if
21: return PrunedList

30

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

In each recursion of RPF, it gets two real numbers { InterStart, InterEnd

} as the inputs and returns the dominated vectors list { PrunedList }. Inter-

Start, InterEnd are the starting and ending points in the interval of one dimen-

sional belief space . In the next step, it calculates MidPnt as the middle point

between InterStart, InterEnd. It is obvious that initially InterStart,InterEnd

are set to 0 and 1 respectively. If | InterStart - InterEnd | ≺ δ ,δ is a positive

parameter set before beginning of the recursion; it exits before entering into the

main loop of the algorithm as shown in Algorithm 4.2.1. Otherwise, it iden-

tifies dominated vectors within given belief intervals :{ InterStart to MidPnt}
and { MidPnt to InterEnd } . We call the dominated vector with belief value

of MidPnt as Vmid , InterStart as Vsrt , InterEnd as Vend respectively (lines

4-6). In the next part of the algorithm, it compares Vmid with Vsrt ; if they

are from the same vectors, it adds Vsrt into PrunedList (line 14), and the

witness region is extended by adding the boundary of dominated vectors. In

the next recursion it gets new intervals InterStart,
(MidPnt + InterStart)

2
as

new arguments for the RPF algorithm (line 12). In this way, it recognizes up-

per surface vectors from InterStart to MidPnt. We use the same approach for

(MidPnt + InterStart)

2
, InterEnd (lines 16-20), recursively to cover remaining

part of the belief space interval.

Figure 4.2 shows an incomplete execution of the RPF for six vectors after

four recursive calls. It recognizes upper surface vectors from belief points

between 0 to 0.5 (where δ ← 0.05 is set before the execution) for a 2-states

problem. When RPF is terminated, a list of identified dominated vectors will

be returned by the PrunedList.

31

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Figure 4.3: Value Function is shown as a plane in a 3-states POMDP problem

4.2.2 RPF in higher dimensions

In the 2D representation, a horizontal axis is the belief space while a vertical

axis is showing the values of each vector over the belief space. Since most of

the POMDP problems have more than two states; it makes value function to

be represented as a set of hyperplanes instead of 2D vectors. In other words,

a POMDP problem with | S | number of states makes (| S | -1) - dimensional

hyperplanes for representing in the belief space . A POMDP policy is then

a set of labelled vectors that are the coefficient of the linear segments that

make up the value function. The dominated vector at each corner of the belief

space is obviously dominant over some region [20]. As mentioned since RPF

receives 2D vectors as the input arguments; the filter algorithm projects every

32

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

hyperplane into 2D planes and then passes 2D vectors set to RPF algorithm.

It sets zero to every component of hyperplane equations except ones that are

in the 2D plane equations. Hence, the projections of hyperplanes are 2D

vectors, therefore a set of 2D vectors in each plane now can be passed to RPF

for filtering. There are
(|S|

2

)
possible 2D planes where | S | is the number of

states. As shown in Figure 4.3, each 3D vector represents value function of

one action.As indicated, after each projection, RPF gets a set of 2D vector

equations and starts filtering. In filtering process, in each plane, if any of the

2D vectors is part of a 2D upper surface, its corresponding hyperplane index

is labelled as dominated vector and its index will add to final pruned vectors

list.

33

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Chapter 5

Experimental Results

5.1 Empirical Results

Asymptotic analysis provides useful information about the complexity of an al-

gorithm, but we also need to provide an intuition about how well an algorithm

works in practice on a set of problems. Another disadvantage of Asymptotic

analysis is that it does not consider constant factors and operations required

outside the programs. To address these problems, we have run SCF,LP,RFP

on the same machine which had 1.6 GHz AMD Athlon Processor with 2Gb

RAM on a set of the benchmark problems from the POMDP literature. These

problems are obtained from Cassandra’s Online repository [2].

For each problem and method we report the following:

1. size of the final value function (|V|);

2. CPU time until convergence;

34

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

3. resulting ADR;

The number of states, actions and observations are represented by S , A

and Z.

As with most exact methods, a set of linear action-value functions are

stored as vectors representing the policy. In each iteration of running algo-

rithm, the current policy is transformed into a new set of vectors which are

then filtered in three stages. As mentioned in chapter 2, each stage produces

a unique minimum-size set of vectors. This cycle is repeated until the value

function converges to a stable set of vectors. The difference between two suc-

cessive vector sets make an error bound. The algorithms are considered to

have converged when the error bound is less than a threshold of convergence

(For example, The ε parameter in LP algorithm). Our previous work[14] has

shown that by setting ε value to 0.02; we converge to a stable set of vectors.

However, a final set of vectors after convergence does not guarantee an optimal

solution until the performance of the policy is considered under a simulator of

the POMDP model. Changing ε to a higher value would lead to a non-optimal

solution, and on the other hand if it is set to a lower value; it may loop between

two sets of vectors because of numerical instability of solvers. Although 0.02

may not be the absolute minimum value for ε, but we believe that it is small

enough to provide the precision for evaluating policies in the simulator.

TABLE 5.1 shows parameter values of α, β, ε and δ for each POMDP

problem in the SCF,LP and RPF algorithms. Each of these parameters are

initialized to base value depending on the quality of the final POMDP solu-

tion and the characteristic of each POMDP model. We have discussed about
35

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

the weakness of the SCF parameter dependency because of the inappropriate

setting of α and β in [14]. As stated above, dynamic programming update

is divided into three phases in all POMDP solvers. Therefore, we have the

same structure of Incremental Pruning in our solvers that are different in their

filtering algorithms.

We have evaluated based on their average CPU time spent to solve each

problem. All POMDP solvers were allowed to run until they converged to a

solution or they exceed a 24 hours maximum running time. Previous researches

on the POMDP solvers [7] , [14], [3], have shown that POMDP exact solvers

for the classical test-bed problems either find a solution before 12 hours or

they can-not converge. Our hypothesis is, because of the numerical instability

they may oscillate between two successive iterations.

TABLE 5.2 summarizes the experiments for all three POMDP solvers.In

this table RPF was compared to linear programming filtering (LP) and scan

line filtering (SCF) techniques . An x on the table means that the problem did

not converge under the maximum time limit set to perform the experiment;

therefore we are unable to indicate how many vectors (i.e Value functions)

form the final solution. The Vector column on the table indicates how many

vectors form the final solution and the Time column shows average CPU time

in second over 32 executions . Having higher number of vectors in the final

solution and less convergence time are two major positive factors that are

considered in our evaluation. We define the term better in our evaluation

when a POMDP solver can find solution of a problem in lesser time with more

final value functions (|V|) than others.

36

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Table 5.1: α, β, ε and δ parameters for the SCF, LP and RPF algorithms
SCF LP RPF

Problems α β ε δ

Tiger 0.05 1 0.02 0.02

Shuttle 0.01 5 0.02 0.02

Example 0.001 5 0.02 0.02

Network 0.001 5 0.02 0.02

Hanks 0.001 5 0.02 0.02

Saci 0.001 5 0.02 0.02

4x3 0.001 5 0.02 0.02

Table 5.2:
Experiment I: Descriptions and results presented as the arithmetic
mean of 32 run-times.

Vector Time(second)

Problem |S| |A| |Z| LP RPF SCF LP RPF SCF

Tiger 2 3 2 7 9 9 4.68 8.625 9.78

Network 7 4 2 x 83 x x 203.031 x

Hanks 4 4 2 5 9 x 1.843 3.875 x

Shuttle 8 3 5 22 35 5 44.68 101.031 977.75

Saci 12 6 5 x 43 x x 600.938 x

4x3 16 4 2 x 436 x x 72006.625 x

Example 2 2 3 x 4 5 x 1.9062 14.75

From the TABLE 5.2 we can see that RPF found solution on POMDP

problems Network, Scai, 4x3 while SCF and LP were not able to converge to

a solution before 24 hour limit. In the term of size of the final value function

(|V|), RFP had more vectors than both SCF and LP in the Shuttle, and more

than LP in Hanks and the Tiger problems. It also shows RPF is faster than

SCF in Tiger,Shuttle and the Example but slower than LP approach in the

problems that LP solved :Tiger, Hanks and Shuttle. RPF is better than the

others in POMDP problems Network, Scai and 4x3.

37

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

5.2 Simulation

One way to evaluate the quality of policy is to run it under simulator and

observe accumulated average of the discounted reward that agent received

over several trials. A POMDP policy is evaluated by its expected discounted

reward over all possible policy rollouts. Since the exact computation of this

expectation is typically intractable, we take a sampling approach, where we

simulate interactions of an agent following the policy with the environment.

A sequence of interactions, starting from b0, is called a trial. To calculate

ADR, successive polices are tested and rewards are discounted, added and

averaged accordingly. Each test starts from an arbitrary belief state with a

given policy, Discounted reward is added for each step until the maximum

steps limit is reached. The test is repeated for the number of trials. Steps are

added among all the trials. The ADR is represented in the form of (mean ±
confidence interval) among all tested policies. In our implementation of ADR,

confidential interval is 95% .

∑#trials
i=0

∑#steps
j=0 γjrj

#trials
(5.1)

We computed the expected reward of each such trial, and averaged it over a

set of trials, to compute an estimation of the expected discounted reward.

In this experiment, we have computed ADR for a sub-set of POMDP prob-

lems where the RPF algorithm and either LPF or SCF techniques have solu-

tions. Since ADR values are noisy for the less number of trials, we have tested

different number of trials starting with 500. After several tries, we saw that

38

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Table 5.3: Experiment II: Average Discounted Reward
Average Discounted Reward

Problem |S| |A| |Z| LP SCF RPF

Tiger 2 3 2 20.74 ± 0.65 18.78 ± 0.6793 18.12 ± 0.696

Hanks 4 4 2 3.147 ± 0.039 x 3.178 ± 0.039

Shuttle 8 3 5 32.7116 ± 0.1064 33.05 ± 0.104 32.74 ± 0.103

Example 2 2 3 x 51.87 ± 0.16 49.92 ± 0.12

the difference between ADR means with 2000 trials and 2500 are small enough

to chose 2000 as the final number of trials in our experiment.We tested such

policies in the simulator with 500 steps for each POMDP problem over 2000

trials as shown in TABLE 5.3.

In general, RPF has the near close ADR values to other approaches. This

implies RPF policy has a performance similar to SCF and LP for the set

of problems we chose. Although LP is the winner in term of the ADR for

the Tiger, but it has smaller ADR mean value for the rest of the problems

than RPF. One hypothesis is size of |V| in LP policy in TABLE 5.2 for these

problems is smaller than RFP; and it also shows that the value of computed

ADR mean under a policy is proportional to the size of the final value function

(|V|). However, the policies of SCF in the Shuttle and LP in the Tiger problem

are two exceptions that with less (|V|) we have observed nearly same or better

ADR mean values than with higher (|V|). We believe that it may come from

characteristics of the POMDP model, Therefore since these values are nearly

close to each other further experiments need to be done to prove our guesses.

39

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Chapter 6

Conclusion

6.1 Discussion

We considered a new filtering technique, called Recursive Point Filter (RPF)

for Incremental Pruning (IP) POMDP solver to introduce an alternative method

for Linear Programming (LP) filter. As suggested in the original work on

Incremental Pruning technique, filtering takes place in three stages of an up-

dating process, we have followed the same structure in our implementation to

have a fair evaluation with previous approaches. RPF identifies vectors with

maximum values in each witness region known as dominated vectors. The

dominating vectors at each of these points then become a part of the upper

surface. We have shown that a high-quality POMDP policy can be found

in the less time in some cases.Furthermore, RPF had solutions for several

POMDP problems that LP and SCF were not able to converge in 24 hours.

As discussed in the thesis, the quality of POMDP solutions of LP approach
40

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

depends on the numerical stability of LP solver.Also, LP based filter requires

LP libraries, which can be expensive, especially the powerful ones. Because of

these reasons, we proposed the idea of filtering vectors as a graphical operator

in POMDP solver. In each iteration of the algorithm, vectors that are not part

of the upper-surface would be eliminated. SCF and RPF use the same concept

but with different algorithmic ways. Although SCF had better performance

in some POMDP problems, but it is dependent on the parameters(α,β) for

each POMDP problem. It means that SCF parameters have direct effect on

the quality of solution and convergence time for each POMDP problem. We

discussed about the weakness of SCF with an inappropriate setting of α and

β in [14]. RPF was superior on several POMDP problems while SCF was not

able to converge to solutions before 24 hours or had lesser number of vectors

in the final solutions.

We also included Average Discounted Reward in our evaluation for a sub-

set of POMDP problems where the RPF, LP or SCF techniques have solutions.

We tested such policies in the simulator with 500 steps for the POMDP prob-

lems over 2000 trials.The promising result is, RPF has a closer ADR mean

value than other approaches. This implies RPF policy has a performance

similar to SCF and LP for the set of problems we chose.

Although RPF worked better in the small classical POMDP problems, but

it has poor performance on bigger sized POMDP problems such as: Mini-hall,

Hallway, Mit [2]. Because of this reason and also our thesis consideration on

smaller size problems, we believe that for large POMDP problems like those

discussed above, approximate techniques would be a better option to choose.

41

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

If the complexity of a POMDP problem is close to our set of evaluation, then

LP,with the condition that the size is close enough to the Tiger problem, is

suggested. If LP is not available, or is expensive and the size of the POMDP

problem is not close to the ones that LP was winner in, then RPF is recom-

mended.

6.2 Future Works

Since SCF parameters have important rules either in finding POMDP solution

or increasing the size of the final Value function (|V|), we will improve SCF

with a dynamic setting parameters approach and compare results with RFP

on the sub-set of the POMDP problems where RPF was a winner.

Our initial objective in this research was to present an alternative solver

to evaluate approximate solutions on POMDP problems with small number of

states. We are going to extend our implementation to use parallel processing

over CPU nodes to test RPF on larger POMDP problems like Hallway to

evaluate solutions of approximate techniques. We also intend to log the number

of pruned vectors in each iteration of the algorithms for more consideration on

how well each algorithm performs pruning on average after a large number of

iterations and when the convergence threshold changes.

42

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

Appendix A

Details of some POMDP

problems

In this thesis, we have tested RPF in some problems from the POMDP lit-

erature. These problems include Tiger,Network,Shuttle etc. The test data is

obtained from Cassandra’s POMDP file repository page. This appendix gives

more detailed descriptions to some of these problems.

A.1 Tiger

This problem appears in Cassandra [4]. There is a tiger behind one of the

two doors, left door and right door, and this constitutes to the two states in

this problem. The agent has to avoid opening the door of the room where

the tiger is. There are three actions that the agent can choose from, opening

the left, opening the right door, or listening. If the agent opens the correct

43

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

door, it receives a reward of 10; otherwise, it receives a penalty of -100. If

the agent listens, it can locate the tiger correctly with a probability of 0.85.

For example, if the tiger is on the left , the probability that the agent hears

the tiger on the left is 0.85, and that it hears on the right is 0.15. The agent

receives a penalty of -1 when it listens. Initially, the agent has no knowledge on

where the tiger is. Thus, the initial belief state of this problem is an uniform

distribution over the two possible states, that the tiger is one the left and that

on the right.After opening the door, the agent receives its rewards/penalty,

and the whole process starts again.

A.2 Network

This is a 7-states network monitoring problem from Littman.The initial belief

state in the simulation is randomly generated. The maximum reward and

penalty are 80 and -40 respectively.

A.3 Shuttle

This problem appears in Chrisman [5]. It is a shuttle docking problem, in

which the shuttle has to transport supplies between two stations. The shuttle

has to go from the most-recently visited station to the least recently visited

station,which means, from the docked station to the other station.The shuttle

receives a reward of +10 when it attaches to the right station, and a penalty of

-3 if it collides with the station.The other action does not lead to any reward

or penalty. The initial state is that the shuttle docked in the most-recently
44

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

visited station, therefore, the initial belief state has probability of 1 to the

state representing this situation. The state space of this problem consists of

states that represent the relative positions of the shuttle to the most and least

recently visited stations.

45

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

References

[1] Peter E. Caines. Linear Stochastic Systems. John Wiley, New York, New

York, April 1988.

[2] A. R Cassandra. Exact and Approximate Algorithms for Partially Observ-

able Markov Decision Process. PhD thesis, Brown University, Department

Of Computer Science, 1998.

[3] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. Incre-

mental pruning: A simple, fast, exact algorithm for partially observable

Markov decision processes. In Proceedings of the Thirteenth Annual Con-

ference on Uncertainty in Artificial Intelligence, 1997.

[4] Anthony R. Cassandra, Leslie P. Kaelbling, and Michael L. Littman. Act-

ing optimally in partially observable stochastic domains. In Proceedings of

the Twelfth National Conference on Artificial Intelligence, Seattle, WA,

1994.

[5] L Chrisman. Reinforcement learning with perceptual aliasing: The per-

ceptual distinctions approach.
46

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

[6] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson.

Planning under time constraints in stochastic domains. ARTIFICIAL

INTELLIGENCE, 76:35–74, 1993.

[7] Aisoa Randrianasolo Eddy C.Borera and Larry Pyeatt. Intersection point

based pomdp solver. submitted to ICRA2010.

[8] Judy Goldsmith and Martin Mundhenk. Complexity issues in Markov

decision processes. In Proceedings of the IEEE Conference on Computa-

tional Complexity. IEEE, 1998.

[9] E. A. Hansen. Cost-effective sensing during plan execution. In Proceedings

of Twelfth National Conference on Artificial Intelligence.

[10] Cheng H.T. Algorithms for Partially Observable Markov Decision Process.

PhD thesis, University of British Columbia,British Columbia, Canada,

1988.

[11] Masoumeh T. Izadi, Doina Precup, and Danielle Azar. Belief selection in

point-based planning algorithms for pomdps. In In AI06, pages 383–394,

2006.

[12] Jak Kirman, Ann Nicholson, Moises Lejter, and Thomas Dean. Using

goals to find plans with high expected utility. In In Proceedings of the

Second European Workshop on Planning, pages 158–170, 1993.

[13] M.L Littman, A.R Cassandra, and Kaelbling L.P. Efficient dynamic-

programming updates in partially observable markov decision process.

Technical report, Brown University,Providence ,RI, 1996.
47

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

[14] Aisoa Randrianasolo Mahdi Naser-Moghadasi and Larry Pyeatt. Scanline

point based pomdp solver. submitted to ICRA2010.

[15] G. E. Monahan. A survey of partially observable Markov decision pro-

cesses. Management Science, 28(1):1–16, 1982.

[16] R.C. Moore. A formal theory of knowledge and action. In J.R. Hobbs

and R.C. Moore, editors, Formal Theories of the Commonsense World,

pages 319–358. Ablex, Norwood, NJ., 1985.

[17] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value

iteration: An anytime algorithm for POMDPs. In Proceedings of the In-

ternational Joint Conference on Artificial Intelligence, Acapulco, Mexico,

2003.

[18] L.K Platzman. A feasible computational approach to infinite-horizon

partially-observed markov decision problems. Technical report, Georgia

Institute of Technology, Atlanta,GA, 1981.

[19] P. Poupart and C. Boutilier. Valuedirected compression of pomdps, 2003.

[20] Larry D. Pyeatt and Adele E. Howe. A parallel algorithm for POMDP

solution. In Proceedings of the Fifth European Conference on Planning,

pages 73–83, Durham, UK, September 1999.

[21] Stéphane Ross and Brahim Chaib-Draa. Aems: an anytime online search

algorithm for approximate policy refinement in large pomdps. In IJ-

CAI’07: Proceedings of the 20th international joint conference on Artifi-

48

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

cal intelligence, pages 2592–2598, San Francisco, CA, USA, 2007. Morgan

Kaufmann Publishers Inc.

[22] Guy Shani, Ronen I. Brafman, and Solomon E. Shimony. Forward search

value iteration for pomdps. In IJCAI’07: Proceedings of the 20th inter-

national joint conference on Artifical intelligence, pages 2619–2624, San

Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[23] Richard D. Smallwood and Edward J. Sondik. The optimal control of

partially observable Markov processes over a finite horizon. Operations

Research, 21:1071–1088, 1973.

[24] Trey Smith and Reid G. Simmons. Heuristic search value iteration for

POMDPs. In Proc. Int. Conf. on Uncertainty in Artificial Intelligence

(UAI), 2004.

[25] Matthijs T. J. Spaan. Cooperative active perception using POMDPs. In

AAAI 2008 Workshop on Advancements in POMDP Solvers, July 2008.

[26] Matthijs T. J. Spaan. Cooperative active perception using POMDPs. In

AAAI 2008 Workshop on Advancements in POMDP Solvers, July 2008.

[27] Matthijs T. J. Spaan and Nikos Vlassis. Randomized point-based value

iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–

20, 2005.

[28] Jonathan Tash and Stuart Russell. Control strategies for a stochastic

planner. In In Proceedings of the Twelfth National Conference on Artificial

Intelligence, pages 1079–1085, 1994.
49

T
¯
exas Tech University, Mahdi Naser-Moghadasi, May 2010

[29] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, editors. Probabilistic

Robotics. The MIT Press, June 2006.

[30] R Washington. Incremental markov-model planning. In Proceedings of

TAI-96.

[31] Nevin L. Zhang and Wenju Liu. A model approximation scheme for

planning in partially observable stochastic domains. J. Artif. Int. Res.,

7(1):199–230, 1997.

50

