
Sentimental Semantic Classification using Decomposed LSTM over Big Data

by

Mahdi Naser Moghadasi, M.Sc

A Dissertation

In

Computer Science

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Yu Zhuang

Victor Sheng

Shuo Yu

Mark Sheridan
Dean of the Graduate School

December, 2020

c©2020, Mahdi Naser Moghadasi

Texas Tech University, Mahdi Naser Moghadasi, December 2020

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

I. INTRODUCTION . 1

II. MOTIVATION . 3
Innovations . 4

III. RELATED WORKS . 5
Neural Network Optimization . 5

Neural Architecture Search (NAS) 5
Pruning . 5

Word Emebdding . 6

IV. FEATURE REPRESENTATION . 10
Bag of words (BOW) . 10
TF-IDF . 10
Word2Vec . 11

Skip-gram . 12
Continuous bag-of-words . 12
Negative sampling . 14

GloVe . 15
fastText . 16
Sentence Embedding . 17

Paragraph Vector . 18
Smooth Inverse Frequency (SIF) 19
unsupervised Smoothed Inverse Frequency (uSIF) 19

V. TEXT CLASSIFICATION ALGORITHMS 21
Decision Tree . 21
Naive Bayes Classifiers . 22

ii

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Support Vector Machine . 23
Recurrent Neural Network . 24

VI. CHATBOT . 27
Methodology . 28

Dataset Collection . 29
Sentence Encoder . 30

Chatbot Model . 31
Platform Demonstration . 31

Technical Framework . 32
Chatbot Interface . 33

Use Case Studies . 33

VII. ANALYSIS OF FACEBOOK COMMENTS 36
Motivation . 36
Proposed Framework . 37

Data Collection . 37
Data Exploration . 38
VADER Sentimental Analyzer . 38
Semantic Analyzer . 39
Cosine Similarity function . 41

Results and Discussion . 42

VIII. PROPOSED METHODS . 47
Sent2Vec: Sentimental Embedding . 47
LSTM Decomposing Technique . 48

IX. EXPERIMENTS . 51
Dataset . 51
Implementation . 51

Sent2Vec . 51
LDM . 54

Evaluation . 55
Sent2Vec . 56

iii

Texas Tech University, Mahdi Naser Moghadasi, December 2020

LDM . 58

X. DISCUSSION . 67
Sent2Vec . 67
LDM . 67

XI. CONCLUSION . 68

BIBLIOGRAPHY . 69

iv

Texas Tech University, Mahdi Naser Moghadasi, December 2020

ABSTRACT

Text classification is considered as one of the primary task in many Natural Language
Processing (NLP) applications. Traditional text classifiers often depends on human in-
teraction for feature design, such as building dictionaries or knowledge databases. The
range of text classification research goes from designing the best features to choosing the
best possible machine learning classifiers. In industry fields, such as marketing and prod-
uct management, they are already leveraging the process of text analyzing and extracting
information from textual data. For example text classification of content on the website
using tags helps Google crawl the website easily or a faster emergency response system
can be made by classifying panic conversation on social media. In text classification a
challenge is the feature engineering over the input to extract characteristics and find their
associations to the output classes. With the evolve of deep neural network, the task of fea-
ture extraction is mostly taken care with dense layers of neural network where each layer
extracts a representation of the input data.
However, success of deep learning is associated to our ability to train large neural net-
works for large datasets. Long training times for deep neural networks (DNNs) affect re-
search in new DNN by slowing the development of DNNs.Hence, faster training enables
increasingly larger models to be trained on large datasets in feasible amounts of time. An-
other challenge in text classification problems for sentimental analysis tasks is traditional
feature engineering of data presented as embedding representation are not sufficient in
specific domain when there is a latent sentiment inside the sentence.
To solved these challenges, we propose LSTM Decomposing Method (LDM) to reduce
training time of DNN(s) and present Sent2Vec, a new representation of input text that
includes the sentiment. LSTM Decomposing Method (LDM) is based on disintegrating
the internal unit of a Recurrent Neural Network (RNN) into sub-units. Unlike previous
similar researches, our approach does not need an active re-training during the parame-
ter reduction phase. Additionally, we introduce Sent2Vec, a sentimental representation
for text classification. Sent2Vec magnified the sentiment representation of a sentence and
produces a vector of numbers where positions replicated the original embedding charac-
teristics yet with a taste of the sentiment of the sentence. In this report, we utilized our
techniques over multiple dataset including Amazon dataset which has 3,000,000 records

v

Texas Tech University, Mahdi Naser Moghadasi, December 2020

for training and 650,000 for testing. We also explain two use cases of NLP techniques in
chatbot implementation and Facebook comment analysis.

vi

Texas Tech University, Mahdi Naser Moghadasi, December 2020

LIST OF TABLES

6.1 Reddit Dataset Analysis . 30
6.2 Dataset size of Questions and Answers . 30
7.1 Topics and Captions pulled from Facebook. 38
7.2 Sentimental and Statistical Analysis over topics. 43
7.3 Semantic score similarity . 46
8.1 LSTM Trainable Weights . 50
9.1 Sentimental Scores . 51
9.2 Word embedding description . 62
9.3 Logistic Regression performance with uSIF sentence embedding 63
9.4 Silhouette score per cluster . 63
9.5 Neural Network classifier . 64
9.6 Dataset Description . 64
9.7 Logistic Regression over different dataset 65
9.8 Accuracy . 66

vii

Texas Tech University, Mahdi Naser Moghadasi, December 2020

LIST OF FIGURES

4.1 The architecture for the Skip-Gram model. 13
4.2 The architecture for the Continuous Bag Of Words. 14
4.3 Model architecture of fastText for a sentence with N ngram features x1, ..., xN .

. 17
4.4 A framework for learning word vectors. Context of Word1, Word2 and

Word2 are used to predict the Center Word. 18
5.1 Probability mass function for Binomial distribution over 40 samples. 23
5.2 A linear SVM. 24
5.3 Long Short-Term Memory (LSTM) architecture 26
6.1 Deep Averaging Network (DAN) architecture 30
6.2 The Query Semantic Understanding in chatbot model 32
6.3 The overview design of opioid prototype 32
6.4 A chatbot interface with a sample of questions and answers 33
6.5 Three use cases of the chatbots . 34
7.1 Architecture of framework to process comments. 38
7.2 Total comments distribution over subjects. 39
7.3 Sentimental module uses VADER to calculate sentimental score. 40
7.4 Sentimental scores of all topics. 40
7.5 Deep Averaging Network (DAN) architecture 41
7.7 Semantic analysis module to calculate semantic score. 42
7.6 Cosine Similarity - α is the angle between two encoded vectors of Crime

and Sport. 42
7.8 Distribution of sentimental scores per each topic 44
7.9 Semantic textual similarity . 46
8.1 Sent2Vec Neural Network . 47
8.2 The original RNN model . 50
8.3 The decomposed RNN model . 50
9.1 Training process of Sent2Vec neural network 52
9.2 Embedding Transformation to Sentimental Embedding 53
9.3 Word cloud of top 5000 frequent words with highest TF-IDF 55
9.4 Word cloud of top 15000 frequent words with highest TF-IDF 55
9.5 Testing process of different word embeddings 56

viii

Texas Tech University, Mahdi Naser Moghadasi, December 2020

9.6 Cluster Representation for each Sentence Embedding 59
9.7 Model accuracy over training dataset . 61

ix

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER I
INTRODUCTION

In many industries the advent of Big Data has resulted in a need to process and analyze
vast amounts of data in a fast, efficient and scalable manner to extract business insights
and improve customer experience. Sentiment analysis is a computational approach toward
identifying opinion, sentiment, and subjectivity in text. Sentiment classification methods
classify a document associated with an opinion to be positive or negative. In industrial
applications of NLP, sentimental analysis is a task to understand how satisfied a user is
after receiving a service or buying a product. As part of a pre-processing task in NLP,
the text needs to be transformed into a format that is understandable by computer. The
traditional approach is to convert a text into a format of numeric vector before feeding
into machine learning algorithm. This representation of a word refers to word embedding.
Due to the progress of the word embedding as the skeleton for many NLP tasks, researchers
have tried to compute embeddings that capture the semantics of word sequences (phrases,
sentences, and paragraphs), with methods ranging from simple additional composition
of the word vectors to sophisticated architectures such as convolutions neural networks
and recurrent neural networks [56, 106, 114]. Arora et.al. [8] proposed a strong base-
line for computing sentence embeddings: take a weighted average of word embeddings
and modify with Singular Value Decomposition (SVD). This simple method outperforms
complicated approaches such as Long Short Term Memory (LSTM) on similarity tasks.
The technique is called smooth inverse frequency (SIF). In a more sophisticated version of
SIF method, Ethayarajh et al. [36] introduced unsupervised smoothed inverse frequency

(uSIF). uSIF is based on the principle that more frequent words should be down-weighted
because they are typically less informative. A challenge in the text data representation is
the generalization of the word embedding methods. Despite the rising popularity regard-
ing the use of word embeddings in different natural language processing task, they often
fail to capture the emotional semantics the words convey.
Deep learning has emerged as a powerful machine learning tool for data representation
and prediction. Mimicking the structure of the brain, neural networks consist of a num-
ber of so-called neurons organized in a certain way for processing information. It learns
to execute tasks by changing the connection between neurons through an iterative train-

1

Texas Tech University, Mahdi Naser Moghadasi, December 2020

ing process. Deep learning approaches in industry frequently have the need to process
very large data sets. Two factors drives the growth of neural network sizes. One is the de-
sire to achieve good accuracies for predictions, making people to turn to larger network
models with large number of internal parameters to be learned. The second is the deluge
of large datasets, which could takes days of high performance computing power to train
their machine learning models. Although a number of large-scale distributed machine
learning frameworks have adapted algorithms to distributed and scale up architectures as
mentioned in [97] to process the data efficiently, there are examples like the BERT and
ResNet-50 models, respectively taking 3 days on 16 TPUv3 chips and 29 hours on 8 Tesla
P100 GPUs [33], [48] to train. As mentioned the training of large models is often both
computation and memory intensive. Deploying such heavy size models in data centers
incurs high power consumption, leading to high utility charges from data centers.
As deep neural networks grow in popularity for a wide range of problems across many
scientific and engineering domains, they also grow in internal structure complexity. One
class of DNNs is Recurrent Neural Network (RNN), which is a class of neural networks
whose connections between neurons form a directed cycle. The application of RNN over
sequential data makes RNN a suitable algorithm for tasks such as text mining, time series
analysis etc. However, the number of parameters or weights in sophisticated networks
makes them expensive to be trained, and even infeasible to be deployed on devices with
limited resources such as memory, storage capacity, network bandwidth or power [44].
For example, the deep neural network used for acoustic modeling in [46] had 11 million
parameters which grew to approximately 67 million for bidirectional RNNs and further to
116 million for the latest forward only GRU models in [5].

2

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER II
MOTIVATION

The success of deep learning is associated to our ability to train large neural networks
for large datasets. Long training times for deep neural networks (DNNs) affect research
in new DNN by slowing the development of DNNs. Faster training enables increasingly
larger models to be trained on for large datasets in feasible amounts of time. Furthermore,
the traditional word embedding methods often model the syntactic context of words but
ignore the sentiment information of text. This can impact on the accuracy of a classifi-
cation model to predict the correct sentimental score for a text. These problems can be
broken down in the following smaller items:

• Problem 1. The training time for models on the large scale data is long.
This is a problem that often unrealized till the testing stage if the choosing of the
algorithm is solely made by studying previous research works on a smaller data
set. For example, research papers [6], [7],[47] use Reuters-21578 Text Categoriza-

tion Collection Data Set 1 as a benchmark for evaluation of their classification al-
gorithms. Reuters-21578 has a total of 21578 instances. Although Reuters-21578
has common features to other larger data set but in our opinion; it has a limitation
to explore other characterizes of text classification algorithms specially when the
objective is to compare a proposed algorithm on an industrial size problem which is
bigger in term of number of instances.

• Problem 2. Traditional word embedding partially includes sentimental charac-
teristics of the sentence.
In industrial applications of NLP, sentimental analysis is a task to understand how
satisfied a user is after receiving a service or buying a product. The traditional ap-
proach is to convert a text into a format of numeric vector before feeding into ma-
chine learning algorithm. This representation of a word refers to word embedding.
However the traditional embedding methods often model the syntactic context of
words but ignore the sentiment information of text. This can impact on the accuracy
of a text classification model to predict the correct sentimental score for a text.

1https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection

3

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Innovations
Regarding the specified problems this research makes the following contributions:

• LSTM Decomposing Method (LDM).
To address the first problem, we introduce a method to decompose the processing
unit of LSTM neural network to reduce the training time, and experimental study
of the implemented decomposed LSTM method on a large document classification
problem will be evaluated. The decomposed LSTM method has fewer trainable pa-
rameters than the original method, and we believe this might impact on reducing
training time. The closest to our techniques are Neural Architecture Search (NAS)
and Pruning algorithms - we will explain them in section III - however, both tech-
niques required training in-advance to find the optimal topology for a neural net-
work. In the simplest form of the LDM, the neural network LSTM layer decom-
posed to sub-layers before training. Furthermore, the neural network is decomposed
in such a way that subunits of the decomposed LSTM allow the use of pre-trained
LSTM unit to start as the subunits. Leading to further reduction of training time for
the decomposed LSTM network.

• Sent2Vec: A New Sentence Embedding Representation With Sentimental Se-
mantic
To discuss new feature embedding, we present Sent2Vec, an alternative embedding
representation that includes the sentimental semantic of a sentence in its embed-
ding vector. We utilized unsupervised Smoothed Inverse Frequency (uSIF) sentence
embedding methods in the Sent2Vec neural network over a multi million samples
dataset. We explain sentence embedding in section IV. The new sentence embed-
ding presented, can be used as features in downstream (un)supervised tasks, which
also leads to better or comparable results compared to sophisticated methods. Fur-
thermore, with a simple logistic regression classifier, Sent2Vec reaches competitive
performance to state-of-the-art results on a large Amazon dataset when combined
with GloVe(6B).

4

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER III
RELATED WORKS

As our research work divided into two major subjects we discuss literature review into
two separate sections. In first section the previous works related to optimization of neural
network to improve the training time over large dataset will be discussed, next we follow
by explanation of different representation methods for words and sentences. There have
been numerous studies done on how to accelerate the training and testing process of a
model, and Neural Architecture Search and model Pruning are two of the well-studied
approaches, and we will investigate in this research for their effectiveness.

Neural Network Optimization
Neural network optimization techniques in general refer to approaches to reduce the train-
ing or testing time. Most of these approaches focus on the trainable parameters in a net-
work or the network structure. For example, in language modeling the size of the param-
eters in the recurrent layers have increased dramatically even with various techniques ex-
plored for optimization in [60] [21].

Neural Architecture Search (NAS)
Identifying good neural network architectures took years of research by experts through
examining different congurations. Recently, there has been an increase of trends in using
algorithms to automate the manual process of architecture design. . Representative archi-
tecture search algorithms can be categorized as evolution [116, 74, 93, 105], weights pre-
diction [14] , Monte Carlo Tree Search [84] and reinforcement learning [123, 124, 121]
where among which reinforcement learning algorithms have stood out with strongest per-
formance. Despite the progress in NAS algorithms a major challenge of intensive com-
putation still exists as each evaluation typically requires re-training the whole neural net-
work.

Pruning
Model pruning requires scaling down the number of parameters or weights of a neural
network, ultimately leading to lower memory and computation costs but with the least

5

Texas Tech University, Mahdi Naser Moghadasi, December 2020

possible loss of the predictive power [44]. By eliminating connection weights with small
values from a trained neural network, pruning algorithms can produce sparser networks
that keep a reduced number of the connections but maintain similar performance com-
pared to the original network. By retaining the original weight initialization values, these
sparse networks can even be trained from scratch to achieve a higher test accuracy [39,
67] than the original network. In model pruning mechanisms they either individually
remove less important parameters (with small values) [44, 45] or structurally remove a
group of such parameters [115, 38, 4, 49, 50]. A drawback of pruning is to require prior
training of the full network to obtain useful information about each weight in advance,
hence increasing end-to-end training time as a result. In this research we introduce an
approach of decomposition to disintegrate an LSTM unit into sub-units without going
through a searching process for the network architecture. Our work is different from tra-
ditional NAS and pruning approaches mainly in not relying on in-advance training of the
selection of network architecture and parameters, and we achieve this through LSTM unit
decomposition. Furthermore, we have investigated and found that small LSTMs trained in
earlier studies can be used as pre-trained sub-units for the decomposed LSTM. Although
the pre-train unit are not a necessary step in order to build the neural network model, the
use of pre-trained units leads to further reduction of training time.

Word Emebdding
The text classification problem in computer science is a challenging problem by convert-
ing the text in a format that is understandable by the computer in a sort of numerical for-
mat. Many machine learning algorithms use a fixed-length vector that represented the fea-
tures. Bag-of-words or BOW is among most common representations in the text domain.
Although its popularity among researchers because of its simplicity it has some draw-
backs. The BOW representation lose the ordering of the words which it entails to ignoring
the semantic of the context in the text. Recent research on deep learning to learn a distri-
bution representation vector over words has achieve more popularity in NLP. Word2Vec
[78] is a neural network model to learn to the center word by its surrounding (context)
words in a statement, It gives words of similar meanings to close points over continuous
vector space. Although its simplicity the model has generated quality words in NLP tasks
such as language modeling, text understanding and machine translation.

6

Texas Tech University, Mahdi Naser Moghadasi, December 2020

An extension to Word2vec is Paragraph Vectors [66] generalize the concept of Word2vec
to learn vector representation for a set of documents. It is an unsupervised algorithm that
learns fixed-length vector representation of variable length text in the corpus. Paragraph
Vectors uses the similar model of word2vec with a document vector (such as a document
id) that is unique for each document. It has surpassed traditional model such as BOWs,
Latent Dirichlet Allocation[80] and text understanding tasks [28]. However there is not
easy clarification on how to retrieve the unique document id using an inference process
in the paper. Also, the number of parameters to be learned increased as the size of the
training corpus and makes it computationally expensive at the testing for unseen data. It
is observed that simple methods of algebra such as additional composition on the word
embedding learned by Word2Vec can keep meanings of a phrase or a sentence, for ex-
ample a popular example is shown that vec(“king”) - vec(“man”) + vec(“women”) is
close to vec(“queen”) [75]. In Doc2vecC [19], it represents each document as a average
of the word embedding vectors of all the words in the documents; this process is during
the learning phase as opposite to other methods which post process the learning word em-
bedding [103], [73]. To speed of the algorithm, Doc2VecC removes words from document
randomly.
The methods discussed so far are belonging to group of word embedding called context-
free representation. These methods only provide a single global representation for each
word, ignoring their context. In more recent methods, the representation for each word
depends on the entire context in which it is used. This new representation called con-
textual representation as the embedding of a word is associated to the context it is ap-
plied. Perhaps a major contribution to contextual representation is the concept of pay-
ing Attention [109] to each word according to their meaning in a sentence. The idea be-
hind attention in neural network is to use parts of the input sentence where most rele-
vant information is concentrated for a word. Bidirectional Encoder Representations from
Transformers (BERT) [32] is a contextual representation methods that implemented the
attention mechanism through a stack of encoder/decoder layers. BERT is designed to pre-
train deep bidirectional representations by jointly conditioning on both left and right con-
text in all layers. As a result, the pre-trained BERT representations can be fine-tuned with
just one additional output layer to create state-of-the-art models for a wide range of tasks,
such as question answering and language inference, without substantial task-specific ar-

7

Texas Tech University, Mahdi Naser Moghadasi, December 2020

chitecture modifications. Different variations of BERT also proposed Robustly Optimized
BERT Approach (RoBERTa) that trained over 160 GB of data which is significantly more
the training data size used for the original BERT. A Lite BERT (ALBERT) architecture
that incorporates two parameter-reduction techniques: factorized embedding parameter-
ization and cross-layer parameter sharing to reduce the size of the model. Beside BERT
and its variation methods, Embeddings from Language MOdels (ELMO) is a character
based contextual embedding method that applies several layers of bidirectional LSTMs
to capture context between words. ELMo representations are purely character based, al-
lowing the network to use morphological clues to form robust representations for out-of-
vocabulary tokens unseen in training. ELMo comes up with the contextualized embed-
ding through grouping together the hidden states (and initial embedding) in a certain way
(concatenation followed by weighted summation). Although its several advantages, yet it
is not as popular as BERT for embedding representation.
Irrespective of contextual and context-free approaches, the generalization of word em-
bedding representation often fails to capture the emotional semantic between words in
a sentence. To overcome this challenge and include effective information into the word
representation, Tang et al [107] proposed Sentiment-Specific Word Embeddings (SSWE)
which encodes both positive/negative sentiment and syntactic contextual information in a
vector space. His work demonstrates the effectiveness of incorporating sentiment labels
in a word level information for sentiment-related tasks compared to other word embed-
dings. Yet, it only focuses on binary labels, which weakens its generalization ability on
other tasks. Felbo et al. [37] achieved good results on affect tasks by training a two-layer
bidirectional Long Short-Term Memory (bi-LSTM) model, named DeepMoji, to pre-
dict emoji of the input document using a huge dataset of 1.2 billions of tweets. However,
collecting billions of tweets is expensive and time consuming for researchers. Emo2vec
[117] is a word-level representation that encodes emotional semantics into fixed-sized,
real-valued vectors. Labutov and Lipson [64] proposed a method that takes an existing
embedding and labeled data as input and produces an embedding in the same space, but
with a better predictive performance in the supervised task. Other popular representations
range from the language model based methods ([65]; [79]; [62]), topic models ([31];[80]),
Denoising Autoencoders and its variants ([112]; [20]), and distributed vector represen-
tations ([72]; [77]; [63]). Another prominent line of work includes learning task-specific

8

Texas Tech University, Mahdi Naser Moghadasi, December 2020

document representation with deep neural networks, such as CNN ([120]) or LSTM based
approaches [106],[27].
Most of discussed methods applied one sort of deep learning algorithms to create a new
representation. However, there some challenges in running complex deep learning al-
gorithms. A major challenge is, size of some of models is too large for an experiment
without high computing infrastructure. For examples the BERT model took 3 days on
16 TPUv3 chips [33] to train. Considering this limitation, we focused on pre-trained mod-
els that are available to be executed over a desktop computer to calculate embeddings of
large dataset such as Amazon reviews [120]. Furthermore, the scope of this research is to
improve the quality of a traditional word embedding (Glove) representation and build a
sentence embedding model that includes sentimental latent patterns in the new representa-
tion. We aim to present different comprehensive evaluations of our method to explain that
although in this experiment our method Sent2Vec utilizes a form of Glove representation
- a lesser complex model compared to BERT - to generate the sentimental embedding, yet
it can also be applied over more complicated models to generate a sentence embedding.
Additionally, our method is different from Emo2Vec, SSWE as the outcome of Sent2Vec
is a sentence representation applied over multi-class labels however these techniques are
restricted for either binary class problems or word embedding representation. Finally, in
our evaluation we compared our method to pre-trained models that are available under
open-source license, we noticed that fast sentence embedding module [12] implemented
many of those pre-trained models to be accessible for public. We explain the data repre-
sentation methods in more detail in the following section.

9

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER IV
FEATURE REPRESENTATION

In this section we discuss over different embedding methods to represent a word in a for-
mat of a vector of numbers. The dimension of the vector varies according to different rep-
resentation methods. The traditional word representation discuss firstly and as we go fur-
ther more sophisticated algorithms will be explained. Finally, we will explain sentence
embedding algorithms that run over the word embedding representation to produce a sin-
gle vector corespondent to a representation of a sentence.

Bag of words (BOW)
Bag of Words (BOW) is known arguably a very common document representation ac-
cording to its simplicity and an easy implementation. BOW uses frequency of occurrence
of each word as features that passed as input to a classifier label documents. Although its
popularity it fails often to find similarity between words and phrases due to sparsity na-
ture of the generated vector in a high dimensional representation. The major weaknesses
of the BOW are: Firstly it loses the ordering between words in a sentence and secondly
due to the first issue introduced the semantics between words are ignored.

TF-IDF
In order to make the text to be understand by computers some sort of representation in the
format of numbers proposed in the format of vector. The process of vectorization or more
specifically document vectorization is to convert text content to a numeric vector that ap-
plied as features. Machine learning algorithm use these features to build a model. Term
frequency - inverse document frequency (TF-IDF) is a numerical statistic representation
that aims to reflect importance of a word in a text document among all other document in
the corpus [104]. TF-IDF stills consider to be a BOW model that loses word ordering.

TF-IDFt,d = (1 + logTFt,d) · log N

DFt

10

Texas Tech University, Mahdi Naser Moghadasi, December 2020

• TF = Term Frequency, which measures how frequently a term
occurs in a document.

• IDF = Inverse Document Frequency, which measures how impor-
tant a term is.

Word2Vec
Word embedding methods are a set of algorithms to represent a word in a format of a vec-
tor with fixed length. That is continuous vectors in a low dimension space that embed-
ding the semantic and lexical features of a word. This continues vector representation of a
word can be obtained from the internal hidden layer of the neural network models used to
train.
There are two word2vec models: skip-gram and continuous bag-of-words (CBOW). They
both manage to capture interactions between a centered word and its context words. How-
ever, they do it differently, and somehow oppositely. While skip-gram models the distri-
bution of context words given the centered word, CBOW is concerned about predicting
the centered word given its context.
Given a predicted word vector r̂ and a target word vector wt. The probability of the target
word conditional on the predicted word is calculated by a softmax function:

P (wt|r̂) =
exp(wTt r̂)∑
w∈W exp(wT r̂)

where W is the set of all target word vectors.
Notice that r̂ is neither an element of W nor computed from elements of W . As we will
see later, elements of W will be called output vectors and r̂ will be computed from a dif-
ferent set consisting of input vectors.
word2vec models’ cost functions (for one target word) minimize the negative log-likelihood
of the target word vector given its corresponding predicted word:

L(wt, r̂) = − logP (wt|r̂) = log

(∑
w∈W

exp(wT r̂)

)
− wTi r̂

11

Texas Tech University, Mahdi Naser Moghadasi, December 2020

The gradient with respect to w of L(wt, r̂) is:

g1(w,wt,W, r̂) =
∂

∂w
L(wt, r̂) = r̂(P (w|r̂)− I{w = wt}) (4.1)

where I{.} is the indicator function.
The gradient with respect to r̂ is:

g2(wt,W, r̂) =
∂

∂r̂
L(wt, r̂) =

∑
w∈W

[P (w|r̂)w]− wt (4.2)

Skip-gram
For an index i and a window size c, skip-gram predicts the context words {wj}, (i − c ≤
j ≤ i + c, j 6= i) given the centered word ri. Hence, in the general model, wt = wj and
r̂ = ri for this case. Fig. 4.1. The cost function is derived as follows:

Lskipgram(c, i) =
∑

i−c≤j≤i+c,i 6=j

− logP (wj|ri)

The gradients of this function are:

∂

∂w
Lskipgram(c, i) = ri

∑
i−c≤j≤i+c,i 6=j

g1(w,wj,W, ri) (4.3)

∂

∂ri
Lskipgram(c, i) =

∑
i−c≤j≤i+c,i 6=j

g2(wj,W, ri) (4.4)

Continuous bag-of-words
Intuitively, this model reverses the modeling mechanism of skip-gram. CBOW predicts
a word given its context. The target word vector is now the output vector of the word at
index i, wi; the predicted word vector is the sum over all context input vectors: Fig. 4.2.

r̂ =
∑

i−c≤j≤i+c,i 6=j

rj

The CBOW’s cost function is as follows:

LCBOW (c, i) = − logP (wi|r̂)

12

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 4.1. The architecture for the Skip-Gram model.

and the gradients are: student

∂

∂w
LCBOW (c, i) = g1(w,wi,W, r̂) (4.5)

∂

∂rj
LCBOW (c, i) = g2(wi,W, r̂) (4.6)

13

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 4.2. The architecture for the Continuous Bag Of Words.

for i− c ≤ j ≤ i+ c, i 6= j. Otherwise,

∂

∂rj
LCBOW (c, i) = 0 (4.7)

Negative sampling
Training a neural network takes a train data and adjusting the neuron weights so that it
predicts that test sample more accurately. In other words, each training sample will tweak

14

Texas Tech University, Mahdi Naser Moghadasi, December 2020

all of the weights in the neural network.
The size of our word vocabulary means that our skip-gram neural network has a tremen-
dous number of weights, all of which would be updated slightly by every one of our bil-
lions of training samples.
Negative sampling addresses this by having each training sample only modify a small
percentage of the weights, rather than all of them. With negative sampling, we are instead
going to randomly select just a small number of negative words to update the weights for.

GloVe
GloVe is a more recent word embedding model developed by [87]. In GloVe , the model
was compared directly to word2vec. There was a debate about how that experiment was
set up. The final version of the paper still claimed that GloVe outperformed word2vec on
the task of word analogy [77] if we let it run long enough. The authors illustrated how the
training objective of skip-gram uses information from the occurrence matrix of a corpus,
which explains why the model, although only uses local context window, can produce
word embeddings that capture global relationships. Hence, the skip-gram model can also
be viewed as a least square problem where only simple matrix decomposition is required
to compute the solution. Thus GloVe yields a better performance than skip-gram.
Concretely, let X be the occurrence matrix of the corpus where the (i, j) entry is number
of times word i and word j co-occur. Denote by Pij = Xik

Xi
the probability that word i and

word j co-occur. The relationship of word i and word j is determined based on the ratio
of the probabilities of their co-occurrences with a context word k:

F
(
(wi − wj)Tw

′

k

)
=
Pik
Pjk

(4.8)

Since in the occurrence matrix, the roles of the rows and columns are interchangeable, we
enforce symmetric to the above equation:

F
(
(wi − wj)Tw

′

k

)
=
F (wTi w

′

k)

F (wTj w
′
k)

(4.9)

From Eqn. 4.8 and Eqn. 4.9, we have:

F (wTi w
′

k) = Pik (4.10)

15

Texas Tech University, Mahdi Naser Moghadasi, December 2020

or
wTi w

′

k = log(Pik) = log(Xik)− log(Xi) (4.11)

From Eqn. 4.11, we set the following weighed least square objective:

J =
∑
i,j

f(Xij)(w
T
i w

′

j + bi + b
′

j − logXij) (4.12)

where f(.) is a weight function and b, b′ are bias terms.
Let’s recall the training objective of skip-gram:

J = −
∑
i

∑
j∈context(i)

logQij (4.13)

where Qij =
exp(wT

i w
′
j)∑

k exp(w
T
i w
′
k)

, which can be rewritten as:

J = −
∑
i,j

Xi,j logQi,j =
∑
i

XiH(Pi, Qi) (4.14)

where H is the cross entropy between two distributions.
The GloVe model is more advanced than Eqn. 4.14 in two ways:
(a) The weight function is not Xi but an arbitrary function f(Xij).
(b) The cross entropy has several drawbacks. First, it assigns more probability mass to
unlikely event. Second, calculating the normalizing constant involves summing over the
entire vocabulary, which is costly. To address these problems, the GloVe model chooses a
quadratic loss instead.

fastText
Joulin et al. [58] introduced an embedding based on the N-gram features. fastText archi-
tecture is a simple linear model with rank constraint, Fig. 4.3. The input to the network
is a look up table over the words. This builds a weight matrix, next the word representa-
tions are averaged into a text representation, which is in turn fed to a linear classifier. The
model uses a softmax function f to compute the probability distribution over the prede-
fined classes. Considering N number of documents, this causes minimizing the negative

16

Texas Tech University, Mahdi Naser Moghadasi, December 2020

hidden

output

X1 XNX3X2 XN-1

Figure 4.3. Model architecture of fastText for a sentence with N ngram features
x1, ..., xN .

log likelihood over the classes:

− 1

N

N∑
n=1

yn log (f (BAxn)) (4.15)

where xn is the normalized bag of features of the n-th document, yn is the label, A and
B are the weight matrices. The linear classifier computation explodes when the number
of class is large. In other words, the computational complexity is O(kh) where k is the
number of classes and h the dimension of the text representation. Hence, to reduce the
computation complexity the author explained applying a hierarchical softmax to reduce
the training time. During training, the computational complexity drops to O (h log2(k)).
Each node is associated with a probability that is the probability of the path from the root
to that node. If the node is at depth l + 1 with parents n1, . . . , nl , the probability is

P (nl+1) =
l∏

i=1

P (ni) (4.16)

This means that the probability of a node is always lower than the one of its parent.

Sentence Embedding
Sentence embedding in an ideal definition which can be explained as the representation
of the semantic of a sentence in a format of a single numeric vector. Sentence embedding
assists to understand the intention of the sentence without calculating individually the em-
beddings of the words. In this section we illustrate the sentence embedding algorithms to
apply over word embeddings to build a single numeric vector representing the sentence.

17

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Paragraph Vector
Paragraph Vectors [66] is a unsupervised learning model that every paragraph is mapped
to a unique vector. This could be consider as an extension to a word2vec model that a
new variable added to map paragraph as it is shown in Fig. 4.4. In a classic implemen-
tation the paragraph vector and word vectors are averaged to predict the next word in a
context.In [76] unweighted averaging is found to do well in short length phrases.

Figure 4.4. A framework for learning word vectors. Context of Word1, Word2 and Word2
are used to predict the Center Word.

The algorithm has two key stages:

• A training phased to get words and paragraph vectors.

• An inference stage to get a paragraph vectors for unseen document.

Although the first step is well understandable from the paper but the inference stage is not
very explained in [66].

18

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Smooth Inverse Frequency (SIF)
The main idea behind SIF [8] is to compute the weighted average of the word vectors in
the sentence and then remove the projections of the average vectors on their first singu-
lar vector. As it is shown in the Algorithm IV, the model accepts a word embedding vw
per each word in a sentence, a set of sentence S, an scalar parameter α and p(w) the (es-
timated) word frequency as a probability. Here the weight of a word w is calculated ac-
cording to a/(a + p(w)). This weight multiplied over the original word embedding and
averaged to build a vector vs. Finally, the projection of vs over its first singular vector
(presented as u in the Algorithm IV) is removed to build the new updated vs as the sen-
tence embedding for sentence s.
[H] Word embeddings {vw : w ∈ V} , a set of sentences S, parameter a and estimated probabili-

ties {p(w) : w ∈ V} of the words. Sentence embeddings {vs : s ∈ S}
sentence s in S vs ← 1

|s|
∑

w∈s
a

a+p(w)vw Form a matrix X whose columns are {vs : s ∈ S} , and

let u be its first singular vector

sentence s in S vs ← vs − uu>vs SIF - Sentence Embedding Different values for a as
the hyper-parameters yielded to be closer to the best results and an even wider range can
achieve significant improvement over unweighted average [8].

unsupervised Smoothed Inverse Frequency (uSIF)
uSIF builds upon the random walk model proposed in [9] by setting the probability of
word generation inversely related to the angular distance between the word and sentence
embeddings. The author discussed about the interesting effect of word vector length on
the probability of a sentence being generated in SIF [8]. To address the effect of word
vector length, it was proposed a random walk model where the probability of observing
a word w at time t is inversely related to the angular distance between the time-variant
discourse vector ct ∈ Rd and the word vector vw ∈ Rd :

p (w | ct) ∝ 1− arccos (cos (vw, ct))

π

where cos (vw, ct) ,
vw · ct

‖vw‖2 · ‖ct‖2

where arccos (cos (vw, ct)) is the angular distance. uSIF and SIF are all based on the prin-
ciple that more frequent words should be down-weighted because they are typically less

19

Texas Tech University, Mahdi Naser Moghadasi, December 2020

informative. We refer the readers to [36],[9] and [8] for more mathematical proofs of SIF
and uSIF methods.

20

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER V
TEXT CLASSIFICATION ALGORITHMS

The problem of classification has been widely studied in information retrieval literature.
The idea of classification is to use a set of training records T = {T1,...,TN}, such that each
record is labeled with a class label from a set of C different discrete Classes = {C1..k}.
The training data is used in order to construct a classification model, which relates the
features in the underlying record to one of the class labels. For a given test instance for
which the class is unknown, the training model is used to predict a class label for this in-
stance. The problem of text classification discussed in different domains such as : Doc-
ument Organization and Retrieval [18], News filtering and Organization[95], Opinion
Mining[119] and Email Classification and Spam Filtering [24],[26], [101]. One of the
challenges in text classification is text produces high dimensional sparse feature input be-
cause of low frequencies on most of the words. It is important in the text classification to
consider such sparsity characteristics.
Feature selection is an important problem for text classification. In feature selection, The
objective is to apply the features which are most correlated to a class during the classifica-
tion process. In the other words, some of the words in the text are has a higher likelihood
to be correlated to the class distribution than others.

Decision Tree
A decision tree in simple word is a graph that uses a dividing method to illustrate every
possible outcome of a decision.In the text data, a condition on attribute to divide the data
space are often based on the presence and absence if a term in the document occurs or
not. A leaf node is represent corresponding class labels. In the other words, Decision Tree
recursively partitions the training data set into smaller subset based on a set of predicates
at each node or branch [35][88]. Other type of predicates or conditions for partitioning are
possible. Single Attribute Splits, Similarity-based multi-attribute split and Discriminant-
based multi-attribute split are different partitioning approaches. [98] used decision tree
in combination with boosting techniques to improve the accuracy of the classification as
well.
As it is shown in the figure below each class is abbreviated with Cn and depending on the

21

Texas Tech University, Mahdi Naser Moghadasi, December 2020

condition of absence or occurring of a Termt the input document categorized to one the
classes of the set {C0,C1}.

Term2

Term1

C1 C0

Term3

Term1

C1 C0

C0

Naive Bayes Classifiers
The Naive Bayes classifier models the distribution of the documents in each class using
a probabilistic model. It is based on an independence assumptions about the distributions
of different terms. Although this assumption is clearly false in many real world applica-
tions, Naive Bayes performs surprisingly well. Two type of models are commonly known
to be studied in text in naive Bayes classification are Multivariate Bernoulli Model and
Multinomial Model. These models make assumption about how the data are generated
and propose a probabilistic model based on these assumptions. Bayes rule in (5.1) is used
to classify test data and picks the class that is most likely has generated the example as
mentioned in [70].

P (A | B) =
P (B | A)P (A)

P (B)
(5.1)

Both models essentially calculate the posterior probability of a class according to distri-
bution of the words in the document. These models are also has a common weakness of
BOW feature that ignores the actual position of the words. A major difference between
Multivariate Bernoulli Model and Multinomial Model these models is considering to take
word frequencies into account and sampling the probability space. Both methods suffer
on assumption that input features have multinomial distribution which is a generalization
of the binomial distribution shown in the Fig. 5.1. Neither binomial nor multinomial dis-
tributions can contain negative values. This can be a major draw back later once we need

22

Texas Tech University, Mahdi Naser Moghadasi, December 2020

0 10 20 30 40

0.0

0.1

0.1

0.2
p = 0.2
p = 0.5

Figure 5.1. Probability mass function for Binomial distribution over 40 samples.

to pass a representation of a document in vector format that included negative dimensions.
(For example average of word2vec representations of all words in a document may have
negative values)

Support Vector Machine
Support Vector Machine (SVM) classifier determine separators in the search space which
entails separating the different classes. SVM in the context of text documents are models
that classifies document based on the value of the linear combinations of the documents
features [108]. A single SVM is a binary classifier [53] such as positive and negative
classes.
The algorithm attempts to find a hyperplane with the maximum margin from the positive
and negative examples. The document with margin of the hyperplane are called support

vector, shown in Fig. 5.2. For a training data set of n points of the form (~x1, y1), ...(~xn, yn)

a hyperplane can be written as the set of points ~x satisfying the equation:

~w.~x− b = 0

.

• ~w is the normal vector to the hyperplane.

• yi is the label for class i.

23

Texas Tech University, Mahdi Naser Moghadasi, December 2020

w · x+ b > 1
w · x+ b = 0

w · x+ b < −1

M
argen

Figure 5.2. A linear SVM.

• ~w · ~x− b = 1 anything on or above this boundary is of one class, with label 1.

• ~w · ~x− b = −1 anything on or below this boundary is of the other class, with label
−1.

The performance bounds on which the maximal margin classifier is based are independent
of the dimension of the feature space [57], but instead depend on the margin. This is the
reason that the SVM with high dimensional feature space can still give good generaliza-
tion performance. However, this requires careful tuning of the regularization parameters.
[83], [85].

Recurrent Neural Network
Neural network based methods have obtained great progress on a variety of natural lan-
guage processing tasks. The primary role of the neural models is to represent the variable-
length text as a fixed-length vector. These models generally consist of a projection layer
that maps words, sub-word units or n-grams to vector representations (often trained be-
fore hand with unsupervised methods), and then combine them with the different architec-
tures of neural networks.
A recurrent neural network (RNN) is able to process a sequence of arbitrary length by re-
cursively applying a transition function to its internal hidden state vector h(t) of the input

24

Texas Tech University, Mahdi Naser Moghadasi, December 2020

sequence. The activation of the hidden state h(t) at time-step t is computed as a function
f of the current input symbol x(t) and the previous hidden state h(t-1).It is common to use
the state-to-state transition function f as the composition of an element-wise nonlinear-
ity with an affine transformation of both x(t) and h(t1). However, There is a problem with
RNNs with transition functions of this form is that during training, components of the
gradient vector can grow or decay exponentially over long sequences.
Long short-term memory network (LSTM) was proposed by [51] to resolve the issue in
learning long-term dependencies. Fig. 5.3 shows an example of LSTM. The LSTM main-
tains a separate memory cell c(t) internally that updates and exposes its content only when
expected. At time step t, LSTM first decides what information to erase from the cell state.
This decision is made by a σ function, called the forget gate. The function takes ht-1 out-
put from the previous hidden layer and xt (current input), and generates a number in [0,
1], where 1 means ”hold” and 0 means erase as it is shown in (5.2). Then LSTM decides
what new information to store in the cell state. This includes two steps. First, a σ func-
tion, called the input gate as Equation (5.3) illustrates decides which values LSTM will
update. Next, a tanh function computes a vector of new possible values C̃t,which will be
added to the cell state in (5.4). LSTM merges these two to create an update to the state.
To update the old cell state Ct-1 into new cell state Ct as (5.5) presented. Finally, LSTM
decides the output according to the cell state. In order to do that, LSTM first runs a σ
layer which decides which parts of the cell state participate in the final output. This pro-
cess occurs in so called output gate in (5.6). Then, LSTM puts the cell state through the
tanh function and multiplies it by the output of the σ gate, so that LSTM only outputs the
parts it decides to as (5.7).

ft = σ(W fxt +W fht−1) (5.2)

it = σ(W ixt +W iht−1) (5.3)

C̃t = tanh(W nxt +W nht−1) (5.4)

Ct = ft ∗ Ct−1 + it ∗ (̃Ct) (5.5)

ot = σ(W oXt +W oht−1) (5.6)

ht = ot ∗ tanh(Ct) (5.7)

25

Texas Tech University, Mahdi Naser Moghadasi, December 2020

σ σ Tanh σ

× +

× ×

Tanh

c〈t−1〉

Cell

h〈t−1〉

Hidden

x〈t〉Input

c〈t〉

Label1

h〈t〉

Label2

h〈t〉Label3

Figure 5.3. Long Short-Term Memory (LSTM) architecture

Recent research on LSTMs has focused in two directions: Finding variations of individual
LSTM memory unit architecture [10, 22, 59, 43], and designing new ways of connecting
LSTM layers into a network [23, 61, 122]. Although both approaches have improved per-
formance over vanilla LSTMs still LSTM is hard to deploy due to its requirement on high
computation complexity and large memory. Our target goal in this research is to address
LSTM high complexity by decomposing an LSTM layer into sub-layers before training
the network. We refer to words neural network and network interchangeably during this
work.

26

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER VI
CHATBOT

In this section 1, we present one of the application of deep learning and text classifica-
tion in developing chatbot. According to a report published by National Institute on Drug
Abuse on 2017 (NIDA,2017) [34] the death toll of overdosing opioids is 115 in the US
per day. Furthermore, in 2016 - the most devastating year of drug overdose epidemic -
near 64,000 people died of drug overdoses and the estimation is over 2 million people
suffer from disorders related to pain relievers for opioid in the United States. A school
of research to address the opioid addicts has tended to focus on proposing a platform to
identify either prescription drug abuse or finding opioid addicts via social media [11].
Relapse prediction if combined with mental support can be prevented or extended the
duration that an addict stays clean. During this period addicts tend to be very emotional
due to affects of the drugs in his/her brain. Hence, support of families, communities and
medical professionals are as important as other medical treatments. However due to lack
of knowledge or certainly of the best action to provide such a support from families and
friends, social media has played as a platform to express addicts problems and confusions
when he/she encounters one [99]. Addicts can post their questions or seek for answers
in specific forums related to opioid subjects. For example on Reddit social media web-
site, some discussion groups allow users to post their opinion or past experience regarding
their opioid addiction and rehabilitation process and other users can either seek for an
answer or educate themselves. The study [3] has done an analysis on various linguistic as-
pects of conversation and their correlation with conversation outcome. Their report shown
quantifiable differences between a more successful and less successful counselors in how
the conduct a conversation.
The evolution of big data opens a new door of the possibility to create a conversational
agent empowered by data-driven methods. The system builds upon the idea of collect-
ing a large number of human-human conversations on the social forums and use machine
learning and information retrieval techniques to build agents that mimic humans in a mu-
tual conversation between AI and human. Advances in machine learning, particularly in
neural networks, has allowed for more complex dialogue management methods and more

1This section has accepted in ICNLP 2020 conference

27

Texas Tech University, Mahdi Naser Moghadasi, December 2020

conversational flexibility [29, 68, 110, 111, 40, 69].
Mental health applications that are in the market use of conversational agents and text-
based dialogue systems. Often these agents can be deployed on messenger systems (eg,
Facebook, Twitter) and are designed to present mental health materials in a more inter-
active and mutual conversational style. In the health field, such agents could be benefi-
cial in helping users by providing relevant information about a disease or the clinicians to
identify symptoms of a disease from a conversation[81]. Koko [82] - a chatbot for mental
health intervention - provides information and education on responsible alcohol use. SHI-
Hbot [13] is another application deployed on Facebook, which answers a wide variety of
sexual health questions on HIV/AIDS.
At the time of this research, despite the variation of chatbots available for mental health
patients, there is no chatbot available for opioid patients to inquire their questions in pri-
vacy using deep pretrained neural networks. We present Robo - a chatbot based on pre-
trained deep averaging network (DAN) to address such demands instantly and accurately.
Our experiment demonstrated that our chatbot retrieves answers semantically by under-
standing the user’s query first and matches to the best answer that has highest semantic
score.
The paper is structured as follows: we define the methodology and data collection process
in section VI. Technical detail and implementation of the Robo are explained in sections
VI and VI, respectively. We illustrate real use cases where Robo retrieves responses from
Reddit social media forums in section VI.

Methodology
Natural Language Understanding is a branch of NLP to convert human text into a format
that is understandable for the computers. Considering this objective many techniques have
been presented in the computer science communities on the concept of encoding a word
to a vector of numbers. Consequently geometric operations can apply over these encoded
numeric vectors to measure similarities between words. The same concept extends to a
larger scale corpus such as a sentence, paragraph or a document to be encoded as a nu-
meric vector respectively. Therefore, A geometric mathematical function such as cosine
function can potentially being used to return similarity score between two documents if
they encoded into numeric vectors.

28

Texas Tech University, Mahdi Naser Moghadasi, December 2020

In this section we explain the web resource to collect the data and store it in the chatbot
knowledge service component. Next, we elaborate the chatbot model which is based on
Query Semantic Understating (QSU). QSU is the machine learning component of the
chatbot application that responsible to return the most relevant answer to a user query.
The QSU encodes the user query into numeric vectors and use cosine similarity score to
measure semantic distance between the user query and potential responses through two
filtering processes discussed in the next section.

Dataset Collection
At the first step, We noticed the essence of having a collection of QA dataset to answer
user’s query. For this propose we chose Reddit [30] social media forum as our resource
to assemble the data. Using the Reddit crawler module, we collected data from over 14
weeks via a daily automatic process to pull the posts, comments and their replies from
subreddits topics such as drugs and opioid and created a questions/answers repository in
the MySQL database as our Knowledge Service component. The format of the data in
MySQL is a dictionary of QA pairs where each question can have multiple answers. We
refer to these pairs as the QA or simply dataset thoroughly this paper.
An analysis over the collected data is shown in Table 6.1. According to Table 6.1 - (a) the
size of dataset is 20,494 including questions and answers where out of 20,494 there are
7,596 questions and 12,898 answers replied to the questions. Furthermore, we extend our
investigation on QA dataset and acknowledged for each question in the dataset there is an
average 1.7 number of answer. While 1.7 replies for a question was an average number,
We noted for some questions the reply’s number is above 150 answers. Part (b) of Table
6.1 shows a statistical report over the questions and answers length in characters unit. We
observed that on average each question in the dataset has over 100 characters long while
for the answers this number is above 600 characters. That indicates users replied with a
longer comments rather than a short response. The length of a sentence can impact on the
encoded representation of it. The analysis of dataset in this section helped us to have a
better understanding on what model to use to encode the dataset into numeric vectors. We
explain about the process of encoding in the sentence encoder in the following chapter.

29

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 6.1. Reddit Dataset Analysis
Total Question Answer
20494 7596 12898

Table 6.2. Dataset size of Questions and Answers
Percentile Question Answer
25% 48 242
50% 112 613
75% 250 1494
95% 718 5421

Sentence Encoder
Sentence encoder is a component of QSU to convert QA dataset and user’s query which,
are often larger than a single word, into numeric vectors. Google introduced Universal
Sentence Encoder [16] in which two different encoders were implemented. First model is
the Transformer based encoder [109] which aims for high-accuracy but has larger com-
plexity and uses more computational resources. The second model uses a deep averaging
network (DAN) [55] where embeddings for words and bi-grams are averaged together
and then used as input to a deep neural network that computes the sentence embeddings.
Likewise to the Transformer encoder, the DAN encoder takes as an input a lowercased
string and produces a a 512 dimensional sentence embedding vectors. DAN utilize the
efficiency with slightly reduced accuracy. As shows in Fig. 7.5, DAN constructed on sev-
eral layers of deep feed-forward neural networks. The objective of stack of layers is that
each layer learns a more abstract representation of the input than the previous one. We ap-
plied the TensorFlowHub python library to load the pretrained model2 of a deep averaging
network (DAN) architecture to encode textual format to numeric vector representations in
the sentence encoder.

Figure 6.1. Deep Averaging Network (DAN) architecture

2https://tfhub.dev/google/universal-sentence-encoder/3

30

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Chatbot Model
We created the chatbot model based on the single turn response matching [113]. In the
single turn response matching the context and the candidate response are encoded as vec-
tors respectively, and then the matching score is computed based on those two vectors.
We introduce Query Semantic Understating (QSU) as the machine learning component
in the chatbot model that implemented the single turn response matching logic. The QSU
retrieval engine is defined as follows: given a set of QA pairs P={qi, ai}ni=1 and a user’s
question q, it finds the most similar qj based on highest cosine similarity score in P and
return the corresponding aj as the reply. All the chatbot implemented components are de-
veloped using Python 3.7 programming language. We applied TensorFlowHub 3 to use
the pretrained models in sentence encoder component.
At the first step in Query Semantic Understanding, the user’s query and Reddit QA dataset
are encoded into numeric vectors using the sentence encoder illustrated in Fig. 6.2. Sen-
tence encoder module through the pretrained NLP model4 generates vectors for QA dataset
as well as user’s query. To better refer to these vectors we denote the following symbols
Av, Qv, Quv for answer, question and query variables respectively. The next step in QSU
is the question filtering process in which the cosine similarity score between each ques-
tion encoded vector (Qv) and the query encoded vector (Quv) calculated. The output of
this process is the id of a question with the largest cosine score. We refer to this ques-
tion as Qmax as it has the maximum cosine similarity score to the user query. In the an-

swer filtering process all the answers associated to the Qmax in the dataset will be selected
and the filtering process calculates a cosine similarity score between those answers (Av)
and the query vector Quv. Finally, the answer with the largest cosine score returns as the
response of the answer filtering process which is presented to the user query. In the fol-
lowing chapter we demonstrate the chatbot platform and several real use cases for opioid
users.

Platform Demonstration
In this section we present our proposed chatbot technical components in more details.
Next, we describe the interface of the chatbot following by experiment chapter.

3https://www.tensorflow.org/hub
4https://tfhub.dev/google/universal-sentence-encoder/3

31

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 6.2. The Query Semantic Understanding in chatbot model

Patient

Chatbot
Website Backend Knowledge

Service Dataset

type
question

send
request

send
request Read

responseresponseshow	answer

Figure 6.3. The overview design of opioid prototype

Technical Framework
The architecture of the chatbot is shown in Fig. 6.3. The individual (e.g., a patient, a pa-
tient’s family member or friend) enters their query in the website through their device
(e.g., computer, laptop, smartphone). The website sends a HTML request to the back-
end server which checks the content of the request and forwards it to the service if it is
valid. The knowledge service analyzes the query semantic using the machine learning al-
gorithms to search the optimal response for the question and sends back the response. The
back-end server gets the response and forwards it to the website as the message to the end
user.
The chatbot web application is created using the cutting-edge technologies to provide
quick and efficient responses to clients. The website is implemented using front-end tech-

32

Texas Tech University, Mahdi Naser Moghadasi, December 2020

nologies (i.e., AngularJS framework5, Node.js6). and Express.js (i.e., a web application
framework to handle REST API) 7 which accelerates the response time for multiple re-
quests.

Chatbot Interface
Fig. 6.4 illustrates the landing page of the chatbot. The client can enter their question
in the query field and press the enter key or the send button. The chatbot shows the user
message and sends their query to API website to provide a suggestion using the machine
learning techniques. After that, the chatbot response displays in the dialogue chatbot.

User
Question

Chatbot
Response

Query

Figure 6.4. A chatbot interface with a sample of questions and answers

Use Case Studies
In this section, we examined three real scenarios in which patients inquired different ques-
tions on opioid. We explain these use cases on how effectively our chatbot responded in
these cases.

5https://angularjs.org/
6https://nodejs.org/en/about/
7https://expressjs.com/

33

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Use Case 1

Use Case 2

Use Case 3

Figure 6.5. Three use cases of the chatbots

Use Case 1: The first picture of Fig. 6.5 shows a sample of an individual asking a ques-
tion whether muscle relaxing medicine helps them to sleep and relax during night or not.
The chatbot analyzed the query and searches the dataset to find the best answer using the
Query Understanding Module discussed earlier. A quick and effective reply is shown on
the browser using previous replies from the dataset. This opinion gives the user a useful
response about the two medicines to take to get relax; also the chatbot clarifies that, the
person who tried these medicines was not sure if the medicines helped for sleeping. Chat-
bot provided a details answer included the tablet mass in mg.
Use Case 2: Another example is illustrated in the middle picture of Fig. 6.5. In this ex-
ample, an individual asks about the usage of opiates. They need to know if chewing the
medicine impacts positively to observe the effective contents. The answer for this ques-
tion is no. We can see how the chatbot assists in providing non-medical suggestion to use
the drug based on the explicit knowledge crawled from previous data from the social net-
work website (reddit).
Use Case 3: The last use case is about mixing drugs. The third end-user wonders if using
Ketamine and opiates together is safe or not. It is known that Ketamine is used for sev-

34

Texas Tech University, Mahdi Naser Moghadasi, December 2020

eral reasons such as maintaining anesthesia. Using our knowledge base, chatbot shares
an experience of another individual who have used GABA drug. GABA is used also for
maintaining anesthesia for relapse prevention. This response is correct advice which com-
plies to the research in GABA and Ketamine. This scenario is one of quite often possible
examples when an individual searches for side effects or usage misuse of mixing drugs.

35

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER VII
ANALYSIS OF FACEBOOK COMMENTS

Social media posts and their comments are rich in variation of subjects and an interest-
ing pool for opinion mining. Individuals engage in social communications on Facebook
through three behaviors: like, share and comment on a Facebook post. Responses to com-
ments are grouped under the respective comment as a conversation thread. Conversation
threads become interesting when users have conflicting views with the article posted, or
with the opinion of another user. In this section1 our research goal is to answer questions
such as why some posts in Facebook receive more attention than others? Are conversation
threads following a similar pattern between subjects like sport and politics? Are there any
harmony between conversation threads of different subjects? We investigated how indi-
viduals react to different conversation subjects in the Facebook through a comprehensive
analysis. our aim is to discover semantic and sentimental patterns in conversation threads
categories. Finally, we employed Natural Language Processing techniques such as seman-
tic and sentimental analysis and a statistical method like average response time (ART) or
average comment length (ACL) of a post and observed that there are interesting patterns
exists among different conversation threads.

Motivation
Researchers have studied comments in the various places YouTube videos comments,
blog comments, comments on media releases websites [102, 100]. Comment mining is
to study comments in computational linguistics and NLP literature to analyze attitude to-
ward the comment, identify rumors or thread topics or categorizing unique comments,
and much more. It aims to address questions on the sentiment analysis or opinion mining
of comments [15, 92]. Social networks are growing at a fast rate without a break. Most
importantly, the unstructured data that is being stored on these social medias is a pool of
information pertains to a host of several categories containing governments, entertain-
ment, news, travel, education, businesses, and health. In the health domain as an example,
Medina et al. in their research [71], have focused on the sentiment of tweets to identify
a correspondence to health issues and to gain a fresh outlook in analyzing health data.

1This research submitted for the special session in IEEE-Big Data 2020

36

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Similarly, on the Facebook social media, researchers worked on sentiment classification
and sentiment change detection on Facebook comments using the lexicon and machine
learning-based approach[86]. The rising popularity of social media has radically changed
the way news content is propagated, including interactive attempts with new dimensions.
Praboda et al.[90] explored a set of news media page that originate content by themselves
in the social media network.
In this research, we selected the CNN2 news Facebook page as an enrich resource to ana-
lyze the comments. It has been discussed that the CNN followers are more interactive and
gregarious and the most frequently shared posts regarding the USA elections were tackled
by CNN followers [102, 54]. This research aims to provide a complete analysis of users
reaction in a form of replying to Facebook posts in controversial threads for different top-
ics.
In section VII, we discuss on data collection and introduce a proposed framework for the
quantitative analysis in this research. Next, we explain the observation of our investiga-
tion in sections VII and VII which included sentimental and semantic analysis. We em-
ployed several machine learning and NLP algorithms in our experiment. Result and dis-
cussion will be explained in section VII.

Proposed Framework
Data Collection
In this section, we discuss the architecture framework and programming libraries we used
in our experiment to pull and process the unstructured comments from the Facebook
page. We selected 9 different topics from the CNN news Facebook page. As displayed
in Fig.7.1, to extract comments from a post we employed a third-party tool named ex-

port comments3 which is a web application that exports Facebook comments to a comma-
separated file (CSV), thereafter we stored comments in a local database. We filtered the
duplicated users to remove the bias and give each user an even opportunity to analyze
his/her opinion. We implemented the pre-processing module in Python programming lan-
guage as Python includes wide range of libraries to perform different NLP tasks such as
removing non-English words or nested comments. The refined comments transferred to

2Cable News Network
3https://exportcomments.com/

37

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 7.1. Topics and Captions pulled from Facebook.
Topics Title Total Comments
Entertainment Kim Kardashian West and Kanye West welcome fourth child 676
Technology Japan tests world’s fastest bullet train 468
Travel Thailand bay made popular by ’The Beach’ to remain closed for two more years 162
Sport Chicago Cubs ban a fan who was seen making a white power gesture behind a black reporter 442
Crime El Chapo’s attorney asks a judge to intervene over ’cruel and unusual’ prison conditions 718
Health More than 700 cases of mumps in the US this year, CDC says 312
Politics Joe Biden once said a fence was needed to stop ’tons’ of drugs from Mexico 67
Finance The US just raised tariffs on Chinese goods. China says it will hit back 62
Weather Houston gets drenched by overnight storms, and the region braces for another round later 88

PRE-
PROCESSING

exportcomments.com

Comments

VADER
Sentimental
Analyzer

Universal
Sentence
Encoder

Semantic Analysis

Sentimental
Analysis

Figure 7.1. Architecture of framework to process comments.

the next modules for the sentiment and semantic analyses. Table 7.1 displays the topics,
post title and the number of extracted comments.

Data Exploration
A quantitative percentile description of the Table 7.1 is illustrated in Fig. 7.2. This is a
representation of users engagement over different subjects. The distribution implies the
number of comments in subjects of crime and entertainment include the highest percent-
age of the collected records. However, it is opposite for the weather subject. We consider
several factors including users engagement in commenting to a post to measure user activ-
ity to a particular topic.

VADER Sentimental Analyzer
We applied Valence Aware Dictionary and sEntiment Reasoner or VADER library in
python programming language to calculate the semantic score of each comment. VADER
[41] uses a lexicon and rule-based sentiment analysis tool that is mainly attuned to senti-
ments expressed in social media. The output of the sentiment of a text using the VADER

38

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 7.2. Total comments distribution over subjects.

would be subtle (Positive, Neutral, Negative, Compound) rating scores. The first three,
positive, neutral, and negative, represents the proportion of the text that falls into those
categories. The final metric, the compound score, is the sum of all of the lexicon rat-
ings which have been standardized to range between -1 and 1 as is illustrated in Fig. 7.3
. VADER can handle informal writing - multiple punctuation marks, acronyms, and an
emoticon which users quite often follow in the social medias when users write comments.
we utilized the VADER over the collected comments of all topics to measure their com-
pound score and refer it as the sentimental score in this work. A compound score was
used to count how many comments are positive or negative depending on the sign of their
compound score. The percentage of positive and negative comments is displayed in Fig.
7.4, 56% and 44% of total comments have positive and negative sentiment scores respec-
tively.

Semantic Analyzer
The semantic analysis in a simple form is the process of interpreting the contextual clues
surrounding a word to better understand the implication of the content of a sentence. In
the semantic analysis, the text encoded into embedded vectors in the form of numeric rep-
resentation to be understood by the computer. The idea behind the numeric representation
is to encode the text in a lower dimension format that can treat a word using algebraic
operations [42]. In our research, we applied available text encoders from Universal Sen-

39

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Sentiment Metric Score

Positive +0.5

Neutral 0.3

Negative -0.2

Compound 0.6

Vader
Sentimental
Analyzer

Sentimental
Analysis

Figure 7.3. Sentimental module uses VADER to calculate sentimental score.

Figure 7.4. Sentimental scores of all topics.

tence Encoder (USE) [17] and Deep Average Network (DAN) [55] model over collected
data. As shown in Fig. 7.5, DAN is the backbone engine of USE, it constructed on sev-
eral layers of deep feed-forward neural networks. The objective of the stack of layers is
that each layer learns a more abstract representation of the input than the previous one.
They are trained on a large corpus in advance and can be used in a variety of tasks (sen-
timental analysis, classification, and so on). We employed this pre-trained model to iden-
tify any latent semantic patterns between each topic. A model takes a word, sentence, or
paragraph as an input and outputs a 512-dimensional vector. All comments from a post
were concatenated to build a single document. Next the document were encoded to a 512-
dimensional vector. Once the 512-dimensional vectors created, we measured similarities

40

Texas Tech University, Mahdi Naser Moghadasi, December 2020

between documents with cosine similarity function.

Figure 7.5. Deep Averaging Network (DAN) architecture

Cosine Similarity function
Cosine similarity function is a judgment method of orientation of two vectors. Basically if
two vectors have a same orientation they will have a cosine similarity of 1 and if they are
oriented at 90◦ relative to each other they will have a similarity of 0. In a case if they are
diametrically opposite each other they will have a similarity of -1, independent of their
magnitude. The cosine similarity is particularly used in positive space, where the outcome
is neatly bounded in [0, 1]. Fig. 7.6 shows two embedding vectors of Crime and Sport
topics as an example. According to the Eq.7.1 we can calculate the α◦ which represents
a score of semantic similarity between these two topics. Suppose q and r are the vectors
representation of these two topics. The matching function between q and r can be formu-
lated through the cosine similarity with a replacement of Crime as q and Sport as r.

score = cos(qqq, rrr) =
qqq · rrr

||qqq|| · ||rrr||
(7.1)

As the comments of a topic converted to a vector for each category we utilized cosine
similarity operation to calculate how similar are two topics to each other. The output of
the cosine function for some sample topics are displayed in Fig.7.7. We will discuss of
the semantic analysis result in the section VII.

41

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Semantic Analysis

Cosine
Similarity

0.57388
0.13583
0.68883
0.58883

...

Universal
Sentence
Encoder

Embedded
Vectors

Figure 7.7. Semantic analysis module to calculate semantic score.

x

y

z

α

Crime

Sport

Figure 7.6. Cosine Similarity - α is the angle between two encoded vectors of Crime and
Sport.

Results and Discussion
In this section we discuss the sentimental analysis over the collected data and introduce
several statistical methods we applied over the data to measure user engagement in reply-
ing to Facebook posts.

42

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 7.2. Sentimental and Statistical Analysis over topics.
Subject % of Positive Comments % of Negative Comments ACL ART (min) MRT (min)

Entertainment 0.659509 0.340491 50.3033 81.4038 23

Technology 0.638498 0.361502 69.2222 118.813 23

Travel 0.688525 0.311475 70.6235 171.166 25

Sport 0.487973 0.512027 93.8122 65.2305 5

Crime 0.346591 0.653409 96.5641 122.679 11

Health 0.605634 0.394366 98.9519 257.212 23

Politics 0.542222 0.457778 112.398 63.9517 67

Finance 0.466222 0.543478 128.613 405.526 62

Weather 0.490196 0.509804 149.295 145.088 6

We denoted σ as normalized sentiment score that is defined in VII. It calculates the ratio
of number of comments with positive or negative sentiment to total number of comments:

σ =
| s |
| T |

, s ∈ {P ,N}(7.2)where σ is the normalized sentimental score, |T | is the total number
of comments, P and N are the positive and negative comments. Fig. 7.8 illustrated the
normalized positive and negative sentimental scores of each topic. As not all the com-
ments of a particular topic are negative or positive, the figure implies that even on a sub-
ject such as crime there are some positive comments while the majority classified as com-
ments with negative scores. The σ states that individuals in our study expressed a posi-
tive/negative reaction toward certain subjects. Crime followed by finance and sport are
the categories with higher negative σ . On the other hand, technology, entertainment, and
travel are categories with the highest positive σ. A high positive or negative sentimental
score for a topic is a sign of attitude of users toward a post of that topic. For example in
topics with positive sentiment score such as technology and entertainment commenters
express their joy when replied back a comment and it increased the positive sentiment
score. However, in the topic of crime their attitude is opposite. Hate, rage, fear are often
noticeable in comments with crime subjects and they increased the negative sentiment for
the topic in general. The higher value for σ means the intensity of reaction to a post as
more people are expressing their feeling similarly. More especially, we observed that the
magnitude of the emotion irrespective of its sentimental type is a higher value in positive
subjects. It can imply that people expressed their joy with more emotion than their hate
according to this result.

43

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 7.8. Distribution of sentimental scores per each topic

1. Minimum Response Time (MRT)
We define the Minimum Response Time (MRT), as the shortest time interval in
minute of replying to a comment in a topic. Sentimental and statistical analysis
in Table 7.2 illustrate that there are similar patterns between MRT and the senti-
mental score. For example, in topics of entertainment, travel, and technology with
high positive sentimental percentage, they have similar MRT times. Additionally, a
similar pattern is observed on topics with negative sentimental percentage such as
sport and weather and their corresponding MRT times. This pattern can suggest that
users react to comment in a shorter time when they read a post that has high nega-
tive or positive sentimental score [52, 2]. This could be through an empathy to a sad
news or a joy for a happy event.

2. Average Response Time (ART)
We define Average Response Time (ART) as the average time in minute that it took
a comment posted on a topic. Topics of politic and sport have close sentimental
score with lowest ART number and it can indicate the possibility of ongoing dis-
cussions in these topics. It can also infer that these topics are very debatable that
drive to continuous engagement of users for commenting. Readers can study more

44

Texas Tech University, Mahdi Naser Moghadasi, December 2020

on the subject of engagements of users on sport and politics in social media in [1,
89]. The other interesting observation is in the compound score (average of posi-
tive and negative scores) for topics of sport and politics. The score is converged to a
neutral value close to +49. It suggests that in debatable subjects that people usually
have different opinions about a topic to argue ultimately the sentimental score has a
potential to converge to a neutral value if both parties participate at the similar tone.

3. Average Comment Length (ACL)
Average Comment Length (ACL) is the average length of comments collected for
a topic in character units. We did not notice a strong correlation between the sen-
timental score and ACL of a topic. However, in topics of health, crime, and sport
the ACL values are close. Intuitively, when people are expressive they tend to re-
ply to a comment with a lengthy response. Our research indicates that people are
less expensive in topics of entertainment that has the lowest value of ACL and more
expressive in weather that has the highest ACL value.

4. Semantic Analysis
According to wikipedia, the semantic is “the linguistic and philosophical study of
meaning”. More specifically in Natural Language Processing, the semantic is how
to let computers understand the meaning of a text. In our research, we were inter-
ested to know if there was any semantic similarity between the conversation of dif-
ferent topics irrespective if the exact keywords overlapped between topics. To mea-
sure the similarity between topics we contacted all the comments of a topic into a
single document per each topic and fed into semantic analyzer described in section
VII.

The similarity score is displayed in Table 7.3. We applied a heat-map to visualize
semantic correlation between topics and plotted in Fig. 7.9. In the figure the darker
the cell, the higher the score is between two topics. The figure illustrated that there
is a high semantic correlation between subjects of finance and politics with a score
of 0.593097. A high semantic score between topics represent that commenters fol-
low a similar pattern in expressing their thoughts in the comments for these two
topics.

45

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 7.9. Semantic textual similarity

Table 7.3. Semantic score similarity
Entertainment 1 0.323587 0.520708 0.423074 0.418464 0.37774 0.27633 0.155075 0.432649

Technology 0.323587 1 0.557559 0.29630 0.381155 0.389669 0.422396 0.476173 0.414557

Travel 0.520708 0.557559 1 0.283387 0.553418 0.408158 0.317341 0.29717 0.457837

Sport 0.423074 0.296306 0.283387 1 0.304773 0.325181 0.376066 0.275898 0.383634

Crime 0.418464 0.381155 0.553418 0.304773 1 0.509343 0.473935 0.378542 0.441936

Health 0.37774 0.389669 0.408158 0.325181 0.509343 1 0.57659 0.544429 0.492934

Politics 0.27633 0.422396 0.317341 0.376066 0.473935 0.57659 1 0.593097 0.56898

Finance 0.155075 0.476173 0.29717 0.275898 0.378542 0.544429 0.593097 1 0.402763

Weather 0.432649 0.414557 0.457837 0.383634 0.441936 0.492934 0.56898 0.402763 1

Entertainment Technology Travel Sport Crime Health Politics Finance Weather

46

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER VIII
PROPOSED METHODS

In this work we introduce two methods for text classification over big data, one to address
sentimental latent characteristic of the text (Sent2Vec) and second to reduce the training
time by decomposing an LSTM layer into two sub-layers (LDM) to build a network with
less weights to train.

Sent2Vec: Sentimental Embedding
In this section 1, we present the Sent2Vec neural network that transforms a traditional
GloVe embedding to a sentimental embedding representation. The skeleton of Sent2Vec
neural network is displayed in Fig. 8.1.
The model receives a 300-dimension word embedding vector X as the input, where each
dimension in X is a numeric value denoted by xi and 1 < i < 300:

X , {x1, x2, . . . , x300} (8.1)

The network turns X into a sentimental 300-dimension vector Y where yi corresponds to
a numeric value in the sentimental vector. We refer to Y as the true vector.

Y , {y1, y2, . . . , y300} (8.2)

1This section has been submitted as a conference paper in IEEE Big Data 2020

x1

x2

x300

Input
layer

h1

h2

h100

Hidden
layer

y1

y2

y300

Output
layer

...
...

...

Figure 8.1. Sent2Vec Neural Network

47

Texas Tech University, Mahdi Naser Moghadasi, December 2020

We set the hidden layer as a fully connected dense layer with 100 neurons after several
configuration evaluation. We used relu and sigmoid activation functions for the hidden
and the output layers, respectively. This can be explained as below:

H = Frelu(W1X + β1) (8.3)

Y = Fsigmoid(W2H + β2) (8.4)

whereH is the output of the hidden layer,W and β are weight matrices and bias vector
respectively. We have:

Frelu(z) =

z z > 0

0 z <= 0

Fsigmoid(z) =

1

1 + e−z

(8.5)

The loss function to be optimized is the cross entropy for the 300 dimension output, de-
fined as below:

Loss = − 1

300

300∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi) (8.6)

ŷi is the i-th predicted scalar value by the model and yi is a numeric value in the output
vector Y . Accordingly, the output of the neural network Y , is a vector of numbers be-
tween 0 and 1. The example below illustrates a hypothesis case that a sentimental em-
bedding vector Ŷ is predicted by Sent2Vec neural network model for an input sentence
embedding vector X .

−0.10,−0.15,
xi︷ ︸︸ ︷

0.013, ..., 0.068,−0.164︸ ︷︷ ︸
X

⇒ 0.01, 0.05, 0.07,

ŷi︷︸︸︷
0.5 , ..., 0.0006, 0.13︸ ︷︷ ︸
Ŷ

LSTM Decomposing Technique
LSTM Decomposing Method (LDM) has advantage over the pruning and neural network
architecture search algorithms since it does not require re-training and effectively con-

48

Texas Tech University, Mahdi Naser Moghadasi, December 2020

sidered as an off-line method. Consequently, our approach can save time and comput-
ing power if readers decide to implement and deploy our technique over cloud platform.
Fig. 8.2 presents an original form of the RNN neural network with an LSTM layer for
typical text classification problems. During an encoding process the input characters se-
quence needs to be transformed into a numerical format to be understandable by computer
before running any mathematical operations. The encoding process is to form a vector
representation in the embedding layer of an RNN. The embedding layers tailored the se-
quence to create a fixed input length. An LSTM layer consists of gated memory cells that
can integrate information over longer time scales (as compared to simply using recurrent
connections in a neural network). Each LSTM layer has a constant named units which
represents with a positive number and declared as the dimensionality of the output space.
We refer to this parameter with the annotation N In this research. Finally a softmax func-
tion in the last layer computes a probability distribution over the 5 target classes. Fig. 8.3
presents the decomposed LSTM layer architecture where the bigger LSTM layer with N
units is decomposed into two smaller LSTM with [N/2] units each. The output of each
decomposed layer concatenated before passes to the softmax layer. The Equation below
demonstrates the formula for calculating number of weights in each LSTM layer.

4NM +N2 +N (8.7)

Where:

M = Embedding vector dimension

N = Units size

As shown in the (8.7) units size (N) impacts with the squared magnitude in the formula.
Table 8.1 explains this impact, a higher value for N increases number of weights consid-
erably in spite the value of M be fixed to 32 in our experiment. We will explain the advan-
tage of the new topology in reducing the training time in decomposed LSTM versus the
original RNN in section IX.

49

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 8.1. LSTM Trainable Weights

Units LSTM Weights

10 1720

20 4240

40 11680

Em
bedding

Softm
ax

Class 1

Class 2

Class 3

Class 4

Class 5

LSTM

unit = N

Figure 8.2. The original RNN model

Em
bedding

LSTM-1

LSTM-2

Softm
ax

Class 1

Class 2

Class 3

Class 4

Class 5

unit = [N/2]

unit = [N/2]

Figure 8.3. The decomposed RNN model

50

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER IX
EXPERIMENTS

Dataset
To analyze our model, we applied the neural networks designed in the previous steps
over the Amazon review dataset that has been mostly used as a large dataset classifica-
tion benchmark in [120, 25, 118]. The dataset included 3 million reviews for training and
650,000 for testing. For each review there is a rating label that corresponds to user satis-
faction for the product under review. These labels constructs a set of target classes labeled
from 1 to 5. The reader is referred to (Zhang et al [120]) for more details on the construc-
tion of the data sets. We built a look up table according to these labels with a score associ-
ated to it, displayed in Table 9.1.

Implementation
In this section, we explained implementation of both methods Sent2Vec and LDM. We
chose Python programming language for developing both techniques and collect our re-
sults on a desktop computer with 32GB RAM with i7 Intel processor.

Sent2Vec
The scores in the Table 9.1 are optimized values to maximize distance margin between
classes in the vectors Y . As shown in Fig. 9.1, to preprocess the data we required to con-
struct the sentence embedding for each review. We employed uSIF algorithm over word-
embedding GloVe(6B) (refer to Table 9.2) to build sentence embedding required by the

Table 9.1. Sentimental Scores
Label Score

1 -1000

2 -100

3 +1

4 +100

5 +1000

51

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Start

SIF / uSIF
Algorithms

Glove(6B)
Word

Embedding

Sentence
Embedding

Sent2Vec
Model

Amazon
Dataset

Reviews

Sentimental
Embedding

Figure 9.1. Training process of Sent2Vec neural network

neural network. In this experiment, all the word embedding representations mentioned
in the Table 9.2 have 300 dimensions. Each sentence embedding vector X represents an
embedding for a review from the training dataset. In this research, a review is treated as a
sentence that is fed to the Sent2Vec neural network. Eventually, to build the correspond-
ing vector Y , we multiplied vector X with an score from look up Table 9.1 and passed
as input to a sigmoid function to present values in the same range the network expected.
Consequently, an embedding vector Y+ with positive sentiment has a larger dissimilar-
ity to a vector with negative sentiment Y−. Fig. 9.2 illustrated original and sentimental
embedding for the first 20 dimensions predicted by the Sent2Vec for a negative and a pos-
itive review. We will analyze the Sent2Vec results in more detail in the following section.

52

Texas Tech University, Mahdi Naser Moghadasi, December 2020

=⇒

Original Negative Embedding
Sentimental Negative Embedding

=⇒

Original Positive Embedding
Sentimental Positive Embedding

Figure 9.2. Embedding Transformation to Sentimental Embedding

53

Texas Tech University, Mahdi Naser Moghadasi, December 2020

LDM
We implemented the RNN with original and LSTM decomposed topologies using Keras1

API in Python programming language. As it was outlined in the Fig. 8.2, in the original
form of the RNN the input sequence of words adjusted to 500 characters to build a vector
embedding representation with 32 dimensions per word. In our implementation we chose
ADAM optimizer for neural networks along with batch size of 256 and early stopping
mechanism with patience value of 3. As part of the requirement of the neural network we
had to specify the vocabulary list built upon top frequent words. We observed that there is
a slight difference between top 5000 and top 15000 most relevant words according to their
TF-IDF score [91] as shown in Fig. 9.3 and Fig. 9.4. The larger vocabulary size entails
to a higher number of weights to be trained in the neural network and more training time.
Hence, We selected top 5000 frequent words in our model architecture as it had the very
similar impact of a model with 15000 vocabulary. In other words, the important words are
common in both vocabulary lists and a larger vocabulary may add unnecessarily noises.
Furthermore, to align with the previous study on the dataset in [120], 5000 is the reason-
able number.

1https://keras.io/

54

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 9.3. Word cloud of top 5000 frequent words with highest TF-IDF

Figure 9.4. Word cloud of top 15000 frequent words with highest TF-IDF

Evaluation
Our objective goal in this section is to evaluate the LDM method and Sent2Vec model
over different metrics separately. The comparison between the original architecture and
decomposed LSTM networks was to explore the impact of the new topology over the
training time and network accuracy. The experimental study of the implemented decom-
posed LSTM method on a large document classification problem will be evaluated on var-
ious LSTM unit sizes. For the Sent2Vec model, we will apply different word embedding
representations as shown in the Table 9.2 to build a sentence embedding through uSIF al-

55

Texas Tech University, Mahdi Naser Moghadasi, December 2020

gorithm. As Fig. 9.5 details the test processing steps, the Amazon review data converts
to word tokens to construct a word embedding per each word. In the next step the word
embedding transforms to sentence embedding according to the uSIF algorithms. We train
a logistic regression classifier over those sentence embeddings and measure the perfor-
mance of the classification. Additionally, we create sentence embedding using uSIF for

Start

SIF / uSIF
Algorithms

Word
Embedding

Sentence
Embedding

Logistic
Regression

Amazon
Dataset

Reviews

Labels

K-Means

Figure 9.5. Testing process of different word embeddings

each candidate in Table 9.2 of a subset of samples and pass the embeddings into the K-
Means clustering algorithm with K=5 and measure their cohesion per each cluster.

Sent2Vec
We employed 3 million Amazon reviews for the training and 650,000 reviews for the test-
ing in the logistic regression with different embedding representations shown in Table 9.2.
The reader is referred to (Zhang et al [120]) for more details on the construction of the
Amazon dataset. In our implementation we created two Sent2Vec models based on the
different training data size. Sent2Vec-1M and Sent2Vec-300K are neural networks with
the same architecture but trained over 1,000,000 and 300,000 samples respectively. Table
9.3 shows the logistic regression classification results of Sent2Vec against different em-
bedding representations. We measured the performance of the logistic regression through
the accuracy presented by the F1 score [96].

56

Texas Tech University, Mahdi Naser Moghadasi, December 2020

In Table 9.3, we collected the performance metrics for the logistic regression using uSIF
and noticed the Sent2Vec representations have achieved the highest accuracy among all
sentence representations. The Sent2Vec-1M has the highest accuracy across all candi-
dates. Another observation of the results of Table 9.3 is that while Sent2Vec-300K trained
with only 10% of the full Amazon dataset it increases the GloVe(6B) representation by
4% with uSIF sentence embedding. Furthermore, it was showing that performance is fur-
ther raised once we employed more training data for Sent2Vec model in Sent2Vec-1M.
For the second experiment, we created sentence embedding of a subset of samples us-
ing uSIF for each candidate in Table 9.2 and passed the embeddings into the K-Means
clustering algorithm with K=5 as illustrated in Fig. 9.5. Finally we measured the silhou-
ette scores [94] per each cluster. The silhouette score is a metric to measure cohesion be-
tween samples of a cluster compared to other clusters. The silhouette ranges from −1 to
+1, where a high value indicates that the sample is well matched to its own cluster and
inadequately matched to neighboring clusters. For detail on the silhouette scores, readers
may refer to [94].
Table 9.4 shows the silhouette score per each representation. We notice the Sent2Vec-1M
has achieved the highest silhouette score. Furthermore, we plotted each of these clusters
in the Fig. 9.6. The figures demonstrate how each cluster has been formed from its em-
bedding representation of 10000 samples. Furthermore, our analysis according to the
Table 9.4 and Fig. 9.6 indicates the Sent2Vec-1M provides sentence embedding repre-
sentations with a better cohesion for the data, separable boundaries between classes and
highest silhouette score for clusters. The data showed that in the clustering experiment,
Sent2Vec model produces representation that yields to a better clustering form and conse-
quently a higher silhouette score comparing other embedding representations.
To extend our analysis beyond the scope of traditional logistic regression we trained the
embedding representations over a neural network algorithm as neural networks receive a
lot of attention among researchers as popular algorithms for different machine learning
problems. We tested all the embeddings over the neural network as shown in Table 9.5.
The Sent2Vec-1M and DeepMoji algorithms surpassed all the other representations as the
top performers in this problem. Furthermore, to investigate the performance of all the em-
beddings outside of the Amazon dataset we chose different dataset as it is explained in the
Table 9.6 and trained a logistic regression classifier with the different embedding repre-

57

Texas Tech University, Mahdi Naser Moghadasi, December 2020

sentations. The selected dataset have different label classes and different sizes. We trained
the Sent2Vec model (Figure 8.1) over the training data per each dataset. Table 9.7 illus-
trated the performance of the logistic regression over different dataset. We investigated if
the number of label classes had any impact on performance of the Sent2Vec representa-
tion embedding. Our results shown that the Sent2Vec embedding representation had the
top performance in the dataset selected from Table 9.6.

LDM
Our objective goal in the comparison between the original architecture and decomposed
LSTM networks is to explore the impact of the proposed neural network topology on the
training time and network accuracy. In the first experiment, as it is implied in Table 9.8
we selected two original networks with LSTM units number of (N=20) and (N=40) re-
spectively and evaluated with their decomposed versions. Each notation of X-X corre-
sponds to a decomposed LSTM network with 10 or 20 units per each LSTM respectively.
For example the network with notation of 10-10, has a sub-layer with two LSTMs where
each LSTM layer has units of 10 (N = 10). Our first analyze indicates that between the
original and decomposed LSTM, the decomposed ones are always trained in lesser time
with a slight reduce of accuracy in this experiment. In the second part of the comparison,
we applied the pre-trained LSTM layers on decomposed networks and included the ac-
curacy of the new pre-trained decomposed model (denoted with X-X∗) in the Table 9.8.
To build a pre-trained LSTM, a neural network with single LSTM trained over the full
dataset. For example in (10-10 *) a neural network with a single LSTM of 10 trained over
the full dataset first and then the LSTM layer weight used in a decomposed (10-10) neural
network to build a (10-10 *) decomposed pre-trained network. The results of a pre-trained
decomposed network clarify even a further training time drops in a neural network. For
instance, an original neural network of LSTM with 40 units that transformed into (20-20*)
- a pre trained network decomposed- achieved almost 17 hours faster in training time (54
hours vs 37 hours) compared to its original architecture shown in Fig 8.2.
In another comprehensive analysis to verify the performance of the model using transfer
learning, we trained the LSTM module over Yelp dataset to build the pre-trained network.
We noticed although the network trained over a different dataset, yet the training time
on the Amazon dataset is lesser than original and decomposed architectures without any

58

Texas Tech University, Mahdi Naser Moghadasi, December 2020

GloV e(6B) Sent2V ec− 1M Sent2V ec− 300K

GloV e(42B) GloV e(840B) Word2V ec

fastText SSWE DeepMoji

EMO2V ec

Figure 9.6. Cluster Representation for each Sentence Embedding

pre-training. However, it is not as fast as pre-trained decomposed models where the pre-
trained LSTMs trained on Amazon dataset itself. In the last experiment, we used only
1 million records out of 3 million records to pre-train LSTM models and observed the

59

Texas Tech University, Mahdi Naser Moghadasi, December 2020

performance follows similar behaviours as ones that we trained over the Yelp dataset for
single layer LSTM architecture. However, in the pre-trained decomposed category, the
network performed poorly in training time comparing to other decomposed structures. A
possible reason that the training time is not surpassing the decomposed architectures can
be the noises that exist in the dataset. This noise causes the pre-trained model to set the
weights wrongly in the pre-trained phase and it took more time to converge once training
over full 3 million records.
To better analysis of the training time between the original and decomposed topologies,
we plotted the training epochs for these networks. Fig. 9.7 displays the accuracy of the
neural network during training over EPOCHs. We noticed that the networks with decom-
posing topologies always converge with in lesser epochs than the corresponding orig-
inal RNN networks. Pre-trained models can trained once and being employed in com-
plex hierarchies to save training time further. It is clear that a network with a pre-trained
LSTM over the dataset can be expected to start the training from a higher accuracy in
early epochs and even converges quicker. Additionally, as the units increase on the sin-
gle LSTM layer from 20 to 40 the accuracy of the network increases during the training.
A possible strategy can be to use multiple decomposed LSTM layers where each layer has
sufficient unit size.

60

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Figure 9.7. Model accuracy over training dataset

61

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 9.2. Word embedding description

Word embedding Description

GloVe(6B)
Pre-trained vectors based on

Wikipedia. (6B tokens)

GloVe(840B)
Pre-trained vectors based on

Common Crawl (840B tokens)

GloVe(42B)
Pre-trained vectors based on

Common Crawl (42B tokens)

Word2Vec
Pre-trained vectors trained on a part

of the Google News dataset

fastText
Pre-trained vectors over 1 million word

vectors trained on Wikipedia

Sent2Vec-1M
Sentimental vector for GloVe(6B) over

1,000,000 samples of Amazon dataset

Sent2Vec-300K
Sentimental vector for GloVe(6B) over

300,000 samples of Amazon dataset

SSWE
Sentiment-Specific Word Embedding

for Twitter Sentiment Classification [107]

DeepMoji
Using millions of emoji occurrences to learn any-domain

representations for detecting sentiment, emotion and sarcasm [37]

Emo2Vec
Emo2Vec: Learning Generalized Emotion Representation

by Multi-task Training [117]

62

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 9.3. Logistic Regression performance with uSIF sentence embedding

Representation Accuracy

GloVe(6B) 48

GloVe(840B) 47

GloVe(42B) 47

Sent2Vec-1M 55

Sent2Vec-300K 50

Word2Vec 43

fastText 51

SSWE 39

EMO2Vec 39

DeepMoji 53

Table 9.4. Silhouette score per cluster

Representation Silhouette score

GloVe(6B) 0.0394

GloVe(840B) 0.0640

GloVe(42B) 0.0348

Sent2Vec-1M 0.2536

Sent2Vec-300K 0.2228

Word2Vec 0.0393

fastText 0.1138

SSWE 0.0453

EMO2Vec 0.0634

DeepMoji 0.0486

63

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 9.5. Neural Network classifier
Representation Accuracy

Glove(6B) 51

Sent2Vec-1M 53

Sent2Vec-300K 50

WORD2VEC 43

Glove(840B) 50

Glove(42B) 51

FastText 51

SSWE 51

EMO2Vec 45

DeepMoji 53

Table 9.6. Dataset Description

Dataset classes Train set Test set

Amazon 5 3M 650K

DBPedia 14 560K 70K

Yahoo 10 1.4M 60K

64

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 9.7. Logistic Regression over different dataset

Representation Accuracy

Dbpedia

Glove(6B) 63

Sent2Vec 77

WORD2VEC 74

Glove(840B) 70

Glove(42B) 53

FastText 53

SSWE 25

EMO2Vec 49

DeepMoji 50

Yahoo

Glove(6B) 46

Sent2Vec 65

WORD2VEC 48

Glove(840B) 47

Glove(42B) 44

FastText 52

SSWE 30

EMO2Vec 31

DeepMoji 41

65

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Table 9.8. Accuracy

LSTM Training Test Training Time Total Weights

Original RNN

20 59.23 57.63 17:01:50 164,345

40 60.16 58.41 2 days, 5:54:41 171,885

Decomposed LSTM

10-10 58.76 57.30 13:22:43 163,545

20-20 59.39 57.76 1 day, 17:41:57 168,685

Pre-trained Decomposed LSTM

10-10* 58.91 57.24 11:33:12 163,545

20-20* 60.02 57.95 1 day, 13:02:40 168,685

Pre-trained with Yelp dataset

10-10* 58.67 57.16 12:26:50 163,545

20* 58.92 57.52 12:42:43 164,345

20-20* 59.54 57.94 1 day, 12:38:44 168,685

Pre-trained with Amazon subset (1 Million sample)

10-10* 58.85 57.28 14:58:09 163,545

20* 58.96 57.50 11:57:36 164,345

20-20* 59.53 57.90 1 day, 20:28:58 168,685

66

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER X
DISCUSSION

In this paper we introduced two methods to address two major challenges in neural net-
works for sentimental analysis. First LSTM Decomposing Method (LDM) presented to
decompose the processing unit of LSTM neural network to reduce the training time. The
second innovation is Sent2Vec, a new data representation for sentences that boosts the
performance of sentimental analysis by generating a new sentence representation.

Sent2Vec
For Sen2Vec, Our results indicate that the traditional embedding representation are not
sufficient in specific domain when there is a latent sentiment inside the sentence. Sent2Vec
magnified the sentiment representation of a sentence and produces a vector of numbers
between 0s and 1s where position of the numbers replicated the original embedding char-
acteristics yet with a taste of the sentiment of the sentence. Furthermore, our observation
implies that the new embedding increases the performance of NLP algorithms for down-
stream tasks such as sentimental analysis, classification and sentence clustering.

LDM
Experimental study of the implemented decomposed LSTM method on a large document
classification problem showed reductions of training times for various LSTM unit sizes
while attaining similar predictive power. The decomposed LSTM method has fewer train-
able parameters than the original method, and we believe this might be one of the reasons
for the reduced training time. Furthermore, the neural network is decomposed in such a
way that subunits of the decomposed LSTM allow the use of pre-trained LSTM unit to
start as the subunits. Leading to further reduction of training time for the decomposed
LSTM network. The flexibility to use pre-trained subunits enable the re-use of models
from earlier studies that employed LSTM network of smaller sizes. When results of ear-
lier studies turned out to be inadequate in prediction accuracy, the efforts are not all lost
and the LSTM units can be used as pre-trained units for later large scale LSTM network.

67

Texas Tech University, Mahdi Naser Moghadasi, December 2020

CHAPTER XI
CONCLUSION

Beyond understanding what is being discussed, human communication requires an aware-
ness of what someone is feeling. Many conversational systems also known as chatbot re-
lies on recognizing feelings in the conversation partner and replying accordingly which
is a key communicative skill that is trivial for humans. An important module in develop-
ing such systems is a sentimental analysis component to recognize the feeling of received
text. To improve the accuracy of the sentimental model most of the previous works have
focused on improving the classification tasks using new algorithms. However, there is an-
other trend which focuses on text representation that includes the semantic embedding.
The success of the new embedding has shown an improvement in the accuracy of the sen-
timental classifier. In this work, we introduce two methods, one to reduce the training
time and the other to improve accuracy of the sentimental classifier.
We proposed LSTM Decomposing Method (LDM), a method based on disintegrating the
internal unit of a Recurrent Neural Network (RNN) into sub-units. Unlike previous sim-
ilar researches, our approach does not need an active re-training during the parameter re-
duction phase. Additionally, we utilized transfer learning of an LSTM layer that trained
over different dataset in Amazon dataset to reduce the training time further. Experimental
tests reported in this paper has shown that the learning power of the new neural network
over a large real dataset, indicated by prediction accuracy, has changed very slightly while
the training time has been reduced signicantly.
Furthermore, we presented an alternative embedding representation that includes the sen-
timental semantic of a sentence in its embedding vector. The traditional approach is to
convert a text into a format of numeric vector before feeding into machine learning algo-
rithm. This representation of a word refers to word embedding. However the traditional
embedding methods often model the syntactic context of words but ignore the sentiment
information of text. This can impact on the accuracy of a classification model to predict
the correct sentimental score for a text. Our method is different from previous approaches
mainly due to 1) Sent2Vec trained to generate a sentence embedding in one-shot while
previous methods are word embeddings and an intermediate method is needed to convert
word embedding to sentence embedding. 2) We applied Glove embedding in creating the

68

Texas Tech University, Mahdi Naser Moghadasi, December 2020

new sentiment embedding. The Glove data representation provides a richer vocabulary
list compared to other methods. This is important because if the dictionary of the dataset
is only limited to one domain it will not be feasible to evaluate it on other datasets. 3) the
size of the dataset used to train the Sent2Vec is smaller than the previous works. For ex-
ample in Deepmoji algorithm, the author utilized over 1 billion tweets to train the network
while we applied 1 million records of Amazon dataset which substantially smaller.
Our future plan is to use Sent2Vec as the sentiment classifier for the chatbot app discussed
in this dissertation. We plan to extend our research in another comprehensive study to-
ward another set of experiments to observe the behaviour of the network while the vocab-
ulary of texts are different but sentimental contexts remain fixed. Another experiment is
to use LDM as the classifier when the input to the network is the Sent2Vec representation
for an classification task, we intend to evaluate both accuracy and training time compared
once the LDM and Sent2Vec merged together.

69

Texas Tech University, Mahdi Naser Moghadasi, December 2020

BIBLIOGRAPHY

[1] Rebecca M Achen, K Ryerson, and G Clavio. “What customers want: Defining
engagement on social media in sport”. In: Global Sport Business Journal 5.3
(2017), pp. 1–21.

[2] Areej Alhothali and Jesse Hoey. “Good news or bad news: Using affect control
theory to analyze readers’ reaction towards news articles”. In: Proceedings of the

2015 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies. 2015, pp. 1548–1558.

[3] Tim Althoff, Kevin Clark, and Jure Leskovec. “Large-scale Analysis of Coun-
seling Conversations: An Application of Natural Language Processing to Mental
Health”. en. In: Trans Assoc Comput Linguist 4 (2016), pp. 463–476.

[4] Jose M Alvarez and Mathieu Salzmann. “Compression-aware training of deep
networks”. In: Advances in Neural Information Processing Systems. 2017, pp. 856–
867.

[5] Dario Amodei et al. “Deep speech 2: End-to-end speech recognition in english
and mandarin”. In: International conference on machine learning. 2016, pp. 173–
182.

[6] Chidanand Apt, Fred Damerau, and Sholom M Weiss. “Automated Learning of
Decision Rules for Text Categorization”. In: ACM Trans. Inf. Syst 12 (1994),
p. 233.

[7] Chidanand Apt, Fred Damerau, and Sholom M Weiss. “Towards Language Inde-
pendent Automated Learning of Text Categorisation Models”. In: SIGIR. 1994,
p. 23.

[8] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A simple but tough-to-beat base-
line for sentence embeddings”. In: (2016).

[9] Sanjeev Arora et al. “A latent variable model approach to pmi-based word em-
beddings”. In: Transactions of the Association for Computational Linguistics 4
(2016), pp. 385–399.

70

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[10] Justin Bayer et al. “Evolving memory cell structures for sequence learning”. In:
International Conference on Artificial Neural Networks. Springer. 2009, pp. 755–
764.

[11] Jiang Bian, Umit Topaloglu, and Fan Yu. “Towards large-scale twitter mining for
drug-related adverse events”. In: Proceedings of the 2012 international workshop

on Smart health and wellbeing. ACM. 2012, pp. 25–32.

[12] Oliver Borchers. Fast sentence embeddings. https : / / github . com / oborchers /
Fast Sentence Embeddings. 2019.

[13] Jacqueline Brixey et al. “Shihbot: A facebook chatbot for sexual health infor-
mation on hiv/aids”. In: Proceedings of the 18th annual SIGdial meeting on dis-

course and dialogue. 2017, pp. 370–373.

[14] Andrew Brock et al. “Smash: one-shot model architecture search through hyper-
networks”. In: arXiv preprint arXiv:1708.05344 (2017).

[15] Lea Canales et al. “Exploiting a bootstrapping approach for automatic annotation
of emotions in texts”. In: 2016 IEEE International Conference on Data Science

and Advanced Analytics (DSAA). IEEE. 2016, pp. 726–734.

[16] Daniel Cer et al. “Universal Sentence Encoder”. In: CoRR abs/1803.11175 (2018).
arXiv: 1803.11175. URL: http://arxiv.org/abs/1803.11175.

[17] Daniel Cer et al. “Universal sentence encoder”. In: arXiv preprint arXiv:1803.11175

(2018).

[18] Yee Seng Chan and Dan Roth. “Exploiting Syntactico-semantic Structures for Re-
lation Extraction”. In: Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies - Volume 1. HLT
’11. Portland, Oregon: Association for Computational Linguistics, 2011, pp. 551–
560. ISBN: 978-1-932432-87-9. URL: http://dl.acm.org/citation.cfm?id=2002472.
2002542.

[19] Minmin Chen. “Efficient Vector Representation for Documents through Corrup-
tion”. In: CoRR abs/1707.02377 (2017). arXiv: 1707.02377. URL: http://arxiv.org/
abs/1707.02377.

71

https://github.com/oborchers/Fast_Sentence_Embeddings
https://github.com/oborchers/Fast_Sentence_Embeddings
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175
http://dl.acm.org/citation.cfm?id=2002472.2002542
http://dl.acm.org/citation.cfm?id=2002472.2002542
http://arxiv.org/abs/1707.02377
http://arxiv.org/abs/1707.02377
http://arxiv.org/abs/1707.02377

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[20] Minmin Chen et al. Marginalized Denoising Autoencoders for Domain Adapta-

tion. 2012. arXiv: 1206.4683.

[21] Welin Chen, David Grangier, and Michael Auli. “Strategies for training large vo-
cabulary neural language models”. In: arXiv preprint arXiv:1512.04906 (2015).

[22] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078

(2014).

[23] Junyoung Chung et al. “Gated feedback recurrent neural networks”. In: Interna-

tional conference on machine learning. 2015, pp. 2067–2075.

[24] Fabio Ciravegna. “Adaptive Information Extraction from Text by Rule Induction
and Generalisation”. In: Proceedings of the 17th International Joint Conference

on Artificial Intelligence - Volume 2. IJCAI’01. Seattle, WA, USA: Morgan Kauf-
mann Publishers Inc., 2001, pp. 1251–1256. ISBN: 1-55860-812-5, 978-1-558-
60812-2. URL: http://dl.acm.org/citation.cfm?id=1642194.1642261.

[25] Alexis Conneau et al. “Very deep convolutional networks for text classification”.
In: arXiv preprint arXiv:1606.01781 (2016).

[26] James R. Curran and Stephen Clark. “Language Independent NER Using a Max-
imum Entropy Tagger”. In: Proceedings of the Seventh Conference on Natural

Language Learning at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton,
Canada: Association for Computational Linguistics, 2003, pp. 164–167. DOI:
10.3115/1119176.1119200. URL: https://doi.org/10.3115/1119176.1119200.

[27] Andrew M. Dai and Quoc V. Le. Semi-supervised Sequence Learning. 2015.
arXiv: 1511.01432.

[28] Andrew M. Dai, Christopher Olah, and Quoc V. Le. “Document Embedding with
Paragraph Vectors”. In: CoRR abs/1507.07998 (2015). arXiv: 1507.07998. URL:
http://arxiv.org/abs/1507.07998.

[29] Abhishek Das et al. “Human Attention in Visual Question Answering: Do Hu-
mans and Deep Networks Look at the Same Regions?” In: Comput. Vis. Image

Underst. 163 (Oct. 2017), pp. 90–100.

72

http://arxiv.org/abs/1206.4683
http://dl.acm.org/citation.cfm?id=1642194.1642261
https://doi.org/10.3115/1119176.1119200
https://doi.org/10.3115/1119176.1119200
http://arxiv.org/abs/1511.01432
http://arxiv.org/abs/1507.07998
http://arxiv.org/abs/1507.07998

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[30] Munmun De Choudhury and Sushovan De. “Mental health discourse on reddit:
Self-disclosure, social support, and anonymity”. In: Eighth International AAAI

Conference on Weblogs and Social Media. 2014.

[31] Scott Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of the

American Society for Information Science 41.6 (Sept. 1990), pp. 391–407. ISSN:
1097-4571. DOI: 10.1002/(sici)1097-4571(199009)41:6〈391::aid-asi1〉3.0.co;2-9.
URL: http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-
ASI1%3E3.0.CO;2-9.

[32] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805.
URL: http://arxiv.org/abs/1810.04805.

[33] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[34] National Institute on Drug Abuse. Drug Overdose Deaths in the United States.
https://www.drugabuse.gov/publications/drugfacts/prescription-opioids. Online,
accessed 25-March-2018. January-2018.

[35] Richard O. Duda, Peter E. Hart, and David G. Stork. “Pattern Classification (2nd
Edition)”. In: 2000.

[36] Kawin Ethayarajh. “Unsupervised random walk sentence embeddings: A strong
but simple baseline”. In: Proceedings of The Third Workshop on Representation

Learning for NLP. 2018, pp. 91–100.

[37] Bjarke Felbo et al. “Using millions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion and sarcasm”. In: arXiv preprint

arXiv:1708.00524 (2017).

[38] Jiashi Feng and Trevor Darrell. “Learning the structure of deep convolutional net-
works”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2749–2757.

[39] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding
sparse, trainable neural networks”. In: arXiv preprint arXiv:1803.03635 (2018).

73

https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.drugabuse.gov/publications/drugfacts/prescription-opioids

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[40] Haoyuan Gao et al. “Are You Talking to a Machine? Dataset and Methods for
Multilingual Image Question”. In: Advances in Neural Information Processing

Systems 28. Ed. by C Cortes et al. Curran Associates, Inc., 2015, pp. 2296–2304.

[41] CHE Gilbert and Erric Hutto. “Vader: A parsimonious rule-based model for sen-
timent analysis of social media text”. In: Eighth International Conference on We-

blogs and Social Media (ICWSM-14). Available at (20/04/16) http://comp. social.

gatech. edu/papers/icwsm14. vader. hutto. pdf. Vol. 81. 2014, p. 82.

[42] Yoav Goldberg and Omer Levy. “word2vec Explained: deriving Mikolov et al.’s
negative-sampling word-embedding method”. In: arXiv preprint arXiv:1402.3722

(2014).

[43] Klaus Greff et al. “LSTM: A search space odyssey”. In: IEEE transactions on

neural networks and learning systems 28.10 (2016), pp. 2222–2232.

[44] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding”. In:
arXiv preprint arXiv:1510.00149 (2015).

[45] Song Han et al. “Learning both weights and connections for efficient neural net-
work”. In: Advances in neural information processing systems. 2015, pp. 1135–
1143.

[46] Awni Hannun et al. “Deep speech: Scaling up end-to-end speech recognition”. In:
arXiv preprint arXiv:1412.5567 (2014).

[47] P J Hayes, P Nirenburg, and L M Schmandt. “Tcs: a shell for content-based text
categorization”. In: Proceedings of the Sixth IEEE CAIA. 1990, pp. 320–326.

[48] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[49] Yihui He, Xiangyu Zhang, and Jian Sun. “Channel pruning for accelerating very
deep neural networks”. In: Proceedings of the IEEE International Conference on

Computer Vision. 2017, pp. 1389–1397.

74

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[50] Yihui He et al. “Amc: Automl for model compression and acceleration on mo-
bile devices”. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2018, pp. 784–800.

[51] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[52] Jacob Hornik et al. “Information dissemination via electronic word-of-mouth:
Good news travels fast, bad news travels faster!” In: Computers in Human Behav-

ior 45 (2015), pp. 273–280.

[53] Andreas Hotho, Andreas Nürnberger, and Gerhard Paass. “A Brief Survey of Text
Mining”. In: LDV Forum 20 (2005), pp. 19–62.

[54] Mehtab Iqbal and Sushmita Khan. “Mining Facebook Page for Bi-Partisan Analy-
sis”. In: SAIS Proceedings 2018 (2018).

[55] Mohit Iyyer et al. “Deep Unordered Composition Rivals Syntactic Methods for
Text Classification”. In: Proceedings of the 53rd Annual Meeting of the Associa-

tion for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers). Beijing, China: Associa-
tion for Computational Linguistics, July 2015, pp. 1681–1691. DOI: 10.3115/v1/
P15-1162. URL: https://www.aclweb.org/anthology/P15-1162.

[56] Mohit Iyyer et al. “Deep unordered composition rivals syntactic methods for text
classification”. In: Proceedings of the 53rd annual meeting of the association for

computational linguistics and the 7th international joint conference on natural

language processing (volume 1: Long papers). 2015, pp. 1681–1691.

[57] Thorsten Joachims. “Text categorization with Support Vector Machines: Learn-
ing with many relevant features”. In: Lecture Notes in Computer Science (1998),
pp. 137–142. ISSN: 1611-3349. DOI: 10.1007/bfb0026683. URL: http://dx.doi.org/
10.1007/BFb0026683.

[58] Armand Joulin et al. “Bag of tricks for efficient text classification”. In: arXiv

preprint arXiv:1607.01759 (2016).

75

https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.3115/v1/P15-1162
https://www.aclweb.org/anthology/P15-1162
https://doi.org/10.1007/bfb0026683
http://dx.doi.org/10.1007/BFb0026683
http://dx.doi.org/10.1007/BFb0026683

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[59] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empirical explo-
ration of recurrent network architectures”. In: International conference on ma-

chine learning. 2015, pp. 2342–2350.

[60] Rafal Jozefowicz et al. “Exploring the limits of language modeling”. In: arXiv

preprint arXiv:1602.02410 (2016).

[61] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. “Grid long short-term mem-
ory”. In: arXiv preprint arXiv:1507.01526 (2015).

[62] Yoon Kim et al. Character-Aware Neural Language Models. 2015. arXiv: 1508.
06615.

[63] Ryan Kiros et al. Skip-Thought Vectors. 2015. arXiv: 1506.06726.

[64] Igor Labutov and Hod Lipson. “Re-embedding words”. In: Proceedings of the

51st Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers). 2013, pp. 489–493.

[65] “Language Modeling for Information Retrieval”. In: (2003). DOI: 10.1007/978-
94-017-0171-6. URL: http://dx.doi.org/10.1007/978-94-017-0171-6.

[66] Quoc V. Le and Tomas Mikolov. “Distributed Representations of Sentences and
Documents”. In: Proceedings of the 31th International Conference on Machine

Learning, ICML 2014, Beijing, China, 21-26 June 2014. 2014, pp. 1188–1196.
URL: http://jmlr.org/proceedings/papers/v32/le14.html.

[67] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. “Snip: Single-shot
network pruning based on connection sensitivity”. In: arXiv preprint arXiv:1810.02340

(2018).

[68] Jiwei Li et al. “Deep Reinforcement Learning for Dialogue Generation”. In: (June
2016). arXiv: 1606.01541.

[69] Jiasen Lu et al. “Deeper lstm and normalized cnn visual question answering model”.
In: GitHub repository (2015).

[70] Andrew McCallum and Kamal Nigam. “A Comparison of Event Models for Naive
Bayes Text Classification”. In: 1998.

76

http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1506.06726
https://doi.org/10.1007/978-94-017-0171-6
https://doi.org/10.1007/978-94-017-0171-6
http://dx.doi.org/10.1007/978-94-017-0171-6
http://jmlr.org/proceedings/papers/v32/le14.html
http://arxiv.org/abs/1606.01541

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[71] Daniel Medina Sada et al. “A Preliminary Investigation with Twitter to Augment
CVD Exposome Research”. In: Proceedings of the Fourth IEEE/ACM Interna-

tional Conference on Big Data Computing, Applications and Technologies. 2017,
pp. 169–178.

[72] Grégoire Mesnil et al. Ensemble of Generative and Discriminative Techniques for

Sentiment Analysis of Movie Reviews. 2014. arXiv: 1412.5335.

[73] Grégoire Mesnil et al. “Ensemble of Generative and Discriminative Techniques
for Sentiment Analysis of Movie Reviews”. In: CoRR abs/1412.5335 (2014).
arXiv: 1412.5335. URL: http://arxiv.org/abs/1412.5335.

[74] Risto Miikkulainen et al. “Evolving deep neural networks”. In: Artificial Intel-

ligence in the Age of Neural Networks and Brain Computing. Elsevier, 2019,
pp. 293–312.

[75] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in
Continuous Space Word Representations”. In: Human Language Technologies:

Conference of the North American Chapter of the Association of Computational

Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,

Georgia, USA. 2013, pp. 746–751. URL: http://aclweb.org/anthology/N/N13/N13-
1090.pdf.

[76] Tomas Mikolov et al. Distributed Representations of Words and Phrases and their

Compositionality. 2013. arXiv: 1310.4546.

[77] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector
Space”. In: CoRR abs/1301.3781 (2013). arXiv: 1301.3781. URL: http://arxiv.org/
abs/1301.3781.

[78] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”.
In: arXiv preprint arXiv:1301.3781 (2013).

[79] Tomáš Mikolov et al. “Recurrent neural network based language model”. In:
Eleventh Annual Conference of the International Speech Communication Asso-

ciation. 2010.

77

http://arxiv.org/abs/1412.5335
http://arxiv.org/abs/1412.5335
http://arxiv.org/abs/1412.5335
http://aclweb.org/anthology/N/N13/N13-1090.pdf
http://aclweb.org/anthology/N/N13/N13-1090.pdf
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[80] David M. Mimno, Matthew D. Hoffman, and David M. Blei. “Sparse stochastic
inference for latent Dirichlet allocation”. In: Proceedings of the 29th International

Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26

- July 1, 2012. 2012. URL: http://icml.cc/2012/papers/784.pdf.

[81] Joao Luis Zeni Montenegro, Cristiano André da Costa, and Rodrigo da Rosa
Righi. “Survey of conversational agents in health”. In: Expert Syst. Appl. 129
(Sept. 2019), pp. 56–67.

[82] Robert R Morris et al. “Towards an Artificially Empathic Conversational Agent
for Mental Health Applications: System Design and User Perceptions”. en. In: J.

Med. Internet Res. 20.6 (June 2018), e10148.

[83] Gabriel Murray, Steve Renals, and Jean Carletta. “Extractive summarization of
meeting recordings”. In: INTERSPEECH. 2005.

[84] Renato Negrinho and Geoff Gordon. “Deeparchitect: Automatically designing and
training deep architectures”. In: arXiv preprint arXiv:1704.08792 (2017).

[85] Ani Nenkova and Amit Bagga. “Facilitating email thread access by extractive
summary generation”. In: Jan. 2003, pp. 287–296. DOI: 10.1075/cilt.260.32nen.

[86] Alvaro Ortigosa, José M Martın, and Rosa M Carro. “Sentiment analysis in Face-
book and its application to e-learning”. In: Computers in human behavior 31
(2014), pp. 527–541.

[87] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
vectors for word representation”. In: Proceedings of the 2014 conference on em-

pirical methods in natural language processing (EMNLP). 2014, pp. 1532–1543.

[88] J.R. Quinlan. In: Machine Learning 1.1 (1986), pp. 81–106. ISSN: 0885-6125.
DOI: 10 . 1023 / a : 1022643204877. URL: http : / / dx . doi . org / 10 . 1023 / A :
1022643204877.

[89] Lee Rainie et al. “Social media and political engagement”. In: Pew Internet &

American Life Project 19 (2012), pp. 2–13.

[90] Praboda Rajapaksha et al. “Inspecting interactions: Online news media synergies
in social media”. In: 2018 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining (ASONAM). IEEE. 2018, pp. 535–539.

78

http://icml.cc/2012/papers/784.pdf
https://doi.org/10.1075/cilt.260.32nen
https://doi.org/10.1023/a:1022643204877
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1023/A:1022643204877

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[91] Juan Ramos et al. “Using tf-idf to determine word relevance in document queries”.
In: Proceedings of the first instructional conference on machine learning. Vol. 242.
Piscataway, NJ. 2003, pp. 133–142.

[92] Kumar Ravi and Vadlamani Ravi. “A survey on opinion mining and sentiment
analysis: tasks, approaches and applications”. In: Knowledge-Based Systems 89
(2015), pp. 14–46.

[93] Esteban Real et al. “Large-scale evolution of image classifiers”. In: Proceedings

of the 34th International Conference on Machine Learning-Volume 70. JMLR.
org. 2017, pp. 2902–2911.

[94] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis”. In: Journal of computational and applied mathematics

20 (1987), pp. 53–65.

[95] Gerard Salton et al. “Automatic Text Structuring and Summarization”. In: Inf.

Process. Manage. 33.2 (Mar. 1997), pp. 193–207. ISSN: 0306-4573. DOI: 10 .
1016 / S0306 - 4573(96) 00062 - 3. URL: http : / / dx . doi . org / 10 . 1016 / S0306 -
4573(96)00062-3.

[96] Yutaka Sasaki et al. The truth of the f-measure. 2007. 2007.

[97] Scaling up Machine Learning: Parallel and Distributed Approaches. Cambridge
University Press, 2011. DOI: 10.1017/CBO9781139042918.

[98] Robert E. Schapire and Yoram Singer. In: Machine Learning 39.2/3 (2000), pp. 135–
168. ISSN: 0885-6125. DOI: 10.1023/a:1007649029923. URL: http://dx.doi.org/10.
1023/A:1007649029923.

[99] Seeking Drug Abuse Treatment: Know what to Ask. en. National Institute on Drug
Abuse, U.S. Department of Health and Human Services, National Institutes of
Health, 2013.

[100] Rui Shi, Paul Messaris, and Joseph N Cappella. “Effects of online comments on
smokers’ perception of antismoking public service announcements”. In: Journal

of Computer-Mediated Communication 19.4 (2014), pp. 975–990.

79

https://doi.org/10.1016/S0306-4573(96)00062-3
https://doi.org/10.1016/S0306-4573(96)00062-3
http://dx.doi.org/10.1016/S0306-4573(96)00062-3
http://dx.doi.org/10.1016/S0306-4573(96)00062-3
https://doi.org/10.1017/CBO9781139042918
https://doi.org/10.1023/a:1007649029923
http://dx.doi.org/10.1023/A:1007649029923
http://dx.doi.org/10.1023/A:1007649029923

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[101] Advaith Siddharthan, Ani Nenkova, and Kathleen McKeown. “Syntactic Simpli-
fication for Improving Content Selection in Multi-document Summarization”. In:
Proceedings of the 20th International Conference on Computational Linguistics.
COLING ’04. Geneva, Switzerland: Association for Computational Linguistics,
2004. DOI: 10.3115/1220355.1220484. URL: https://doi.org/10.3115/1220355.
1220484.

[102] Stefan Siersdorfer et al. “Analyzing and mining comments and comment ratings
on the social web”. In: ACM Transactions on the Web (TWEB) 8.3 (2014), pp. 1–
39.

[103] Richard Socher et al. “Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank”. In: Proceedings of the 2013 Conference on Empiri-

cal Methods in Natural Language Processing. Seattle, WA: Association for Com-
putational Linguistics, Oct. 2013, pp. 1631–1642. URL: http://www.aclweb.org/
anthology/D13-1170.

[104] Karen Spärck Jones. “A statistical interpretation of term specificity and its appli-
cation in retrieval”. In: Journal of Documentation 60.5 (Oct. 2004), pp. 493–502.
ISSN: 0022-0418. DOI: 10.1108/00220410410560573. URL: http://dx.doi.org/10.
1108/00220410410560573.

[105] Kenneth O Stanley and Risto Miikkulainen. “Evolving neural networks through
augmenting topologies”. In: Evolutionary computation 10.2 (2002), pp. 99–127.

[106] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic

Representations From Tree-Structured Long Short-Term Memory Networks. 2015.
arXiv: 1503.00075.

[107] Duyu Tang et al. “Learning sentiment-specific word embedding for twitter senti-
ment classification”. In: Proceedings of the 52nd Annual Meeting of the Associ-

ation for Computational Linguistics (Volume 1: Long Papers). 2014, pp. 1555–
1565.

[108] Vladimir N. Vapnik. “The Nature of Statistical Learning Theory”. In: (2000). DOI:
10.1007/978-1-4757-3264-1. URL: http://dx.doi.org/10.1007/978-1-4757-3264-1.

[109] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

80

https://doi.org/10.3115/1220355.1220484
https://doi.org/10.3115/1220355.1220484
https://doi.org/10.3115/1220355.1220484
http://www.aclweb.org/anthology/D13-1170
http://www.aclweb.org/anthology/D13-1170
https://doi.org/10.1108/00220410410560573
http://dx.doi.org/10.1108/00220410410560573
http://dx.doi.org/10.1108/00220410410560573
http://arxiv.org/abs/1503.00075
https://doi.org/10.1007/978-1-4757-3264-1
http://dx.doi.org/10.1007/978-1-4757-3264-1
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Texas Tech University, Mahdi Naser Moghadasi, December 2020

[110] Subhashini Venugopalan et al. “Sequence to sequence-video to text”. In: Proceed-

ings of the IEEE international conference on computer vision. 2015, pp. 4534–
4542.

[111] Subhashini Venugopalan et al. “Translating Videos to Natural Language Using
Deep Recurrent Neural Networks”. In: (Dec. 2014). arXiv: 1412.4729.

[112] Pascal Vincent et al. “Extracting and composing robust features with denoising
autoencoders”. In: Proceedings of the 25th international conference on Machine

learning - ICML ’08 (2008). DOI: 10.1145/1390156.1390294. URL: http://dx.doi.
org/10.1145/1390156.1390294.

[113] Hao Wang et al. “A Dataset for Research on Short-Text Conversations”. In: Pro-

ceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing. Seattle, Washington, USA: Association for Computational Linguistics,
Oct. 2013, pp. 935–945. URL: https://www.aclweb.org/anthology/D13-1096.

[114] Yashen Wang et al. “Cse: Conceptual sentence embeddings based on attention
model”. In: Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). 2016, pp. 505–515.

[115] Wei Wen et al. “Learning structured sparsity in deep neural networks”. In: Ad-

vances in neural information processing systems. 2016, pp. 2074–2082.

[116] Lingxi Xie and Alan Yuille. “Genetic cnn”. In: Proceedings of the IEEE interna-

tional conference on computer vision. 2017, pp. 1379–1388.

[117] Peng Xu et al. “Emo2vec: Learning generalized emotion representation by multi-
task training”. In: arXiv preprint arXiv:1809.04505 (2018).

[118] Zichao Yang et al. “Hierarchical attention networks for document classification”.
In: Proceedings of the 2016 conference of the North American chapter of the

association for computational linguistics: human language technologies. 2016,
pp. 1480–1489.

[119] Wen-tau Yih et al. “Multi-document Summarization by Maximizing Informative
Content-words”. In: Proceedings of the 20th International Joint Conference on

Artifical Intelligence. IJCAI’07. Hyderabad, India: Morgan Kaufmann Publishers

81

http://arxiv.org/abs/1412.4729
https://doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1145/1390156.1390294
https://www.aclweb.org/anthology/D13-1096

Texas Tech University, Mahdi Naser Moghadasi, December 2020

Inc., 2007, pp. 1776–1782. URL: http://dl.acm.org/citation.cfm?id=1625275.
1625563.

[120] Xiang Zhang and Yann LeCun. Text Understanding from Scratch. 2015. arXiv:
1502.01710.

[121] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. “Practical network blocks design
with q-learning”. In: arXiv preprint arXiv:1708.05552 6 (2017).

[122] Julian Georg Zilly et al. “Recurrent highway networks”. In: Proceedings of the

34th International Conference on Machine Learning-Volume 70. JMLR. org.
2017, pp. 4189–4198.

[123] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement
learning”. In: arXiv preprint arXiv:1611.01578 (2016).

[124] Barret Zoph et al. “Learning transferable architectures for scalable image recog-
nition”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2018, pp. 8697–8710.

82

http://dl.acm.org/citation.cfm?id=1625275.1625563
http://dl.acm.org/citation.cfm?id=1625275.1625563
http://arxiv.org/abs/1502.01710

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	I. INTRODUCTION
	II. MOTIVATION
	Innovations

	III. RELATED WORKS
	Neural Network Optimization
	Neural Architecture Search (NAS)
	Pruning

	Word Emebdding

	IV. FEATURE REPRESENTATION
	Bag of words (BOW)
	TF-IDF
	Word2Vec
	Skip-gram
	Continuous bag-of-words
	Negative sampling

	GloVe
	fastText
	Sentence Embedding
	Paragraph Vector
	Smooth Inverse Frequency (SIF)
	unsupervised Smoothed Inverse Frequency (uSIF)

	V. TEXT CLASSIFICATION ALGORITHMS
	Decision Tree
	Naive Bayes Classifiers
	Support Vector Machine
	Recurrent Neural Network

	VI. CHATBOT
	Methodology
	Dataset Collection
	Sentence Encoder

	Chatbot Model
	Platform Demonstration
	Technical Framework
	Chatbot Interface

	Use Case Studies

	VII. ANALYSIS OF FACEBOOK COMMENTS
	Motivation
	Proposed Framework
	Data Collection
	Data Exploration
	VADER Sentimental Analyzer
	Semantic Analyzer
	Cosine Similarity function

	Results and Discussion

	VIII. PROPOSED METHODS
	Sent2Vec: Sentimental Embedding
	LSTM Decomposing Technique

	IX. EXPERIMENTS
	Dataset
	Implementation
	Sent2Vec
	LDM

	Evaluation
	Sent2Vec
	LDM

	X. DISCUSSION
	Sent2Vec
	LDM

	XI. CONCLUSION
	BIBLIOGRAPHY

